The Nucleus

, Volume 62, Issue 1, pp 39–50 | Cite as

A comparative assessment of DNA fingerprinting assays of ISSR and RAPD markers for molecular diversity of Saffron and other Crocus spp. in Iran

  • Hamid Najafi Zarini
  • Hoda Jafari
  • Hadi Darzi RamandiEmail author
  • Ahmad Reza Bolandi
  • Mahmoud Reza Karimishahri
Original Article


Genetic diversity among 25 accessions of Crocus L. (Iridaceae) representing 5 accession of cultivated C. sativus, and 20 accessions belonging to wild species namely, C. speciosus, C. cancellatus, C. haussknechtii, C. michelsonii, and two unknown accessions, obtained from different geographical locations of Iran were studied using 7 ISSR and 10 RAPD primers. Out of 78 bands generated from 7 ISSR primers, 71 were polymorphic (90.2%), whereas out of 94 bands generated from 10 RAPD primers 83 were polymorphic (88.3%). The average PIC value obtained with ISSR and RAPD markers was 0.366 and 0.324, respectively. Marker index (ISSR = 3.71; RAPD = 2.68) and resolving power (ISSR = 5.31; RAPD = 4.12) indicated that the ISSR markers were relatively more efficient than RAPD assay in respect of revealing the genetic diversity of Crocus species. Based on percentage of polymorphic bands; resolving power; polymorphic information content; and Marker Index, the A1 (ISSR) and OPB-12 (RAPD) primers were the most informative ones. Clusters obtained from ISSR, RAPD and a combination of both data sets did match the actual taxonomic classification. The mantel test between two Jaccard’s similarity matrices gave r = 0.862, showing very good fit correlation in between ISSR and RAPD based similarities. The analysis of molecular variance showed that the total polymorphism was largely because of within-group variance (ISSRs 57%; RAPDs 64%; Combined RAPDs + ISSRs 60%). Principal coordinates analysis of the pooled data of both the markers, also supports their UPGMA dendrogram. The results will help in future genetic improvement programme of Crocus species.


Crocus ISSRs and RAPDs markers Molecular diversity Saffron 



The authors are grateful for financial support from Khorasan Razavi Agriculture and Natural Resources Research Center, Mashhad, Iran.


  1. 1.
    Abdullaev FI. Antitumor effect of saffron (Crocus sativus L.). Overview and perspectives. Acta Hort (ISHSv). 2004;650:491–9.CrossRefGoogle Scholar
  2. 2.
    Alavi-Kia SS, Mohammadi SA, Aharizad S, Moghaddam M. Analysis of genetic diversity and phylogenetic relationships in Crocus genus of Iran using inter-retrotransposon amplified polymorphism. Biotechnol Biotechnol Equip. 2008;22:795–800.CrossRefGoogle Scholar
  3. 3.
    Arif M, Zaidi NW, Singh YP, Rizwanul-Haq QM, Singh US. A Comparative analysis of ISSR and RAPD markers for study of genetic diversity in Shisham (Dalbergia sissoo). Plant Mol Biol Rep. 2009;27:488–95.CrossRefGoogle Scholar
  4. 4.
    Babaei S, Talebi M, Bahar M, Zeinali H. Analysis of genetic diversity among saffron (Crocus sativus) accessions from different regions of Iran as revealed by SRAP markers. Sci Hortic. 2014;171:27–31.CrossRefGoogle Scholar
  5. 5.
    Bachmann K. Nuclear DNA markers in plant biosystematic research. Opera Bot. 1997;132:137–48.Google Scholar
  6. 6.
    Baghalian K, Shabani Sheshtamand M, Jamshidi AH. Genetic variation and heritability of agro-morphological and phytochemical traits in Iranian saffron (Crocus sativus L.) populations. Ind Crops Prod. 2010;31:401–6.CrossRefGoogle Scholar
  7. 7.
    Beiki AH, Keifi F, Mozafari J. Genetic differentiation of Crocus species by random amplified polymorphic DNA. Genet Eng Biotechnol J. 2010;18:1–10.Google Scholar
  8. 8.
    Bornet BC, Muller FP, Branchard M. Highly informative nature of inter simple sequence repeat (ISSR) sequences amplified using triand tetra-nucleotide primers from DNA of cauliflower (Brassica oleracea var. ‘botrytus’ L.). Genome. 1980;45:890–6.CrossRefGoogle Scholar
  9. 9.
    Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 1980;32:314–31.Google Scholar
  10. 10.
    Caiola MG, Di Somma D, Lauretti P. Comparative study of pollen and pistil of Crocus sativus L. (Iridaceae) and its allied species. Ann Bot. 2001;1:73–82.Google Scholar
  11. 11.
    Dray S, Dufour AB, Thioulouse J. ade4: analysis of ecological data: exploratory and Euclidean methods in environmental sciences. R package version 1.7-13; 2018. Accessed 31 Oct 2018.
  12. 12.
    Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 1987;19:11–5.Google Scholar
  13. 13.
    Esselman EJ, Jianqiang L, Crawford DJ, Winduss JL, Wolfe AD. Clonal diversity in the rare Calamagrostis porteri ssp. insperata (Poaceae): comparative results for allozymes and random amplified polymorphic DNA (RAPD) and intersimple sequence repeat (ISSR) markers. Mol Ecol. 1999;8:443–51.CrossRefGoogle Scholar
  14. 14.
    Fernández JA. Biology, biotechnology and biomedicine of saffron. Recent Res Dev Plant Sci. 2004;2:127–59.Google Scholar
  15. 15.
    Fernández JA. Genetic resources of saffron and allies (Crocus spp.). Acta Hort. 2007;739:167–85.CrossRefGoogle Scholar
  16. 16.
    Frizzi G, Miranda M, Pantani C, Tammaro F. Allozyme differentiation in four species of the Crocus cartwrightianus group and in cultivated saffron (Crocus sativus). Biochem Syst Ecol. 2007;35:859–68.CrossRefGoogle Scholar
  17. 17.
    Gilbert JE, Lewis RV, Wilkinson MJ, Caligari PDS. Developing an appropriate strategy to assess genetic variability in plant germplasm collections. Theor Appl Genet. 1999;98:1125–31.CrossRefGoogle Scholar
  18. 18.
    Gismondi A, Fanali F, Labarga JMM, Caiola MG, Canini A. Crocus sativus L. genomics and different DNA barcode applications. Plant Syst Evol. 2013;299:1859–63.CrossRefGoogle Scholar
  19. 19.
    Ghorbani M. The efficiency of Saffron’s marketing channel in Iran. World Appl Sci J. 2008;4:523–7.Google Scholar
  20. 20.
    Goldblatt P, Davies TJ, Manning JC, van der Bank M, Savolainen V. Phylogeny of Iridaceae subfamily Crocoideae based on a combined multigeneplastid DNA analysis. Aliso. 2006;22:399–411.CrossRefGoogle Scholar
  21. 21.
    Golmohammadi F. Saffron and its farming, economic importance, export, medicinal characteristics and various uses in South Khorasan province- east of Iran. Int J Farm Allied Sci. 2014;3:566–96.Google Scholar
  22. 22.
    Gomes S, Martins-Lopes P, Lopes J, Guedes-Pinto H. Assessing genetic diversity in Olea europaea L. using ISSR and SSR markers. Plant Mol Biol Rep. 2009;27:365–73.CrossRefGoogle Scholar
  23. 23.
    Grilli Caiola M, Caputo P, Zanier R. RAPD analysis in Crocus sativus L. accessions and related Crocus species. Biol Plant. 2004;48:375–80.CrossRefGoogle Scholar
  24. 24.
    Harpke D, Meng S, Rutten T, Kerndorff H, Blattner FR. Phylogeny of Crocus (Iridaceae) based on one chloroplast and two nuclear loci: ancient hybridization and chromosome number evolution. Mol Phylogenet Evol. 2013;66:617–27.CrossRefGoogle Scholar
  25. 25.
    Huang LK, Chen ZH, Zhang XQ, Wang ZG, Liu CS. A comparative analysis of molecular diversity of erect Milkvetch (Astragalus adsurgens) germplasm from north China using RAPD and ISSR markers. Biochem Genet. 2009;47:92–9.CrossRefGoogle Scholar
  26. 26.
    Izadpanah F, Kalantari S, Hassani ME, Naghavi MR, Shokrpour M. Variation in Saffron (Crocus sativus L.) accessions and Crocus wild species by RAPD analysis. Plant Syst Evol. 2014;300:1941–4.CrossRefGoogle Scholar
  27. 27.
    Jaccard P. Nouvelles recherches sur la distribution florale. Bull Soc Vaud Sci Nat. 1908;44:223–70.Google Scholar
  28. 28.
    Karp A, Edwards K, Bruford M, Vosman B, Mogante M, Seberg O, Kremer A, Boursot P, Arctander P, Tautz D, Hewitt G. Newer molecular technologies for biodiversity evaluation: opportunities and challenges. Nat Biotechnol. 1997;15:625–8.CrossRefGoogle Scholar
  29. 29.
    Khan IA. Cytomorphological studies of saffron (Crocus sativus L.). Indian J Agric Res. 1996;30:48–52.Google Scholar
  30. 30.
    Kumar LS, Sawant AS, Gupta VS, Ranjekar PK. Comparative analysis of genetic diversity among Indian populations of Scirpophaga incertulas by ISSR-PCR and RAPD-PCR. Biochem Genet. 2001;39:297–309.CrossRefGoogle Scholar
  31. 31.
    Larsen B, Orabi J, Pedersen C, Ørgaard M. Large intraspecific genetic variation within the Saffron-Crocus group (Crocus L., Series Crocus; Iridaceae). Plant Syst Evol. 2014;301:425–37.CrossRefGoogle Scholar
  32. 32.
    Loarce Y, Gallego R, Ferrer E. A comparative analysis of genetic relationships between rye cultivars using RFLP and RAPD markers. Euphytica. 1996;88:107–15.CrossRefGoogle Scholar
  33. 33.
    Mathew B. Crocus sativus and its allies (Iridaceae). Plant Syst Evol. 1977;128(89–103):37.Google Scholar
  34. 34.
    Mathew B. The Crocus. A revision of the genus Crocus (Iridaceae). Portland: Timber Press; 1982.Google Scholar
  35. 35.
    Moraga AR, Trapero-Mozos A, Gomez-Gomez L, Ahrazem O. Intersimple sequence repeat markers for molecular characterization of Crocus cartwrightianus cv. Albus. Ind Crops Prod. 2010;32:147–51.CrossRefGoogle Scholar
  36. 36.
    Namayandeh A, Nemati Z, Kamelmanesh MM, Mokhtari M, Mardi M. Genetic relationships among species of Iranian crocus (Crocus spp.). Crop Breed J. 2012;3:61–7.Google Scholar
  37. 37.
    Nemati Z, Zeinalabedini M, Mardi M, Pirseyediand SM, Marashi SH, Khayam Nekoui SM. Isolation and characterization of a first set of polymorphic microsatellite markers in saffron, Crocus sativus (Iridaceae). Am J Bot. 2012;99:e340–3.CrossRefGoogle Scholar
  38. 38.
    Nørbæk R, Brandt K, Nielsen JK, Ørgaard M, Jacobsen N. Flower pigment composition of Crocus species and cultivars used for a chemotaxonomic investigation. Biochem Syst Ecol. 2002;30:763–91.CrossRefGoogle Scholar
  39. 39.
    Ørgaard M, Jacobsen N, Heslop-Harrison JS. The hybrid origin of two cultivars of Crocus (Iridaceae) analysed by molecular cytogenetics including genomic southern and in situ hybridization. Ann Bot. 1995;76:253–62.CrossRefGoogle Scholar
  40. 40.
    Ørgaard M, Jacobsen N, Heslop-Harrison JS. Molecular cytogenetics in the genus Crocus L. In: Brandham PE, Bennett MD, editors. Kew chromosome conference IV. Royal Botanic Gardens: Kew; 1995. p. 291–9.Google Scholar
  41. 41.
    Peakall R, Smouse PE. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes. 2006;6:288–95.CrossRefGoogle Scholar
  42. 42.
    Penner GA. RAPD analysis of plant genomes. In: Jauhar PP, editor. Methods of genome analysis in plants. Boca Raton: CRC; 1996. p. 251–6.Google Scholar
  43. 43.
    Petersen G, Seberg O, Thorsoe S, Jorgensen T, Mathew B. A phylogeny of the genus Crocus (Iridaceae) based on sequence data from five plastid regions. Taxon. 2008;57:487–99.Google Scholar
  44. 44.
    Rohlf FJ. NTSYSpc: numerical taxonomy and multivariate analysis system. Ver. 2.2. New York: Exeter Software; 2006.Google Scholar
  45. 45.
    Sik L, Candan F, Soya S, Karamenderes C, Kesercioglu T, Tanyolac B. Genetic variation among Crocus L. species from Western Turkey as revealed by RAPD and ISSR markers. J Appl Biol Sci. 2008;2:73–8.Google Scholar
  46. 46.
    Siracusa L, Gresta F, Avola G, Albertini E, Raggi L, Marconi G, Lombardo GM, Ruberto G. Agronomic, chemical and genetic variability of saffron (Crocus sativus L.) of different origin by LC–UV–vis–DAD and AFLP analyses. Genet Resour Crop Evol. 2012;60:711–21.CrossRefGoogle Scholar
  47. 47.
    Souframanien J, Gopalakrishna TA. Comparative analysis of genetic diversity in blackgram genotypes using RAPD and ISSR markers. Theor Appl Genet. 2004;109:1687–93.CrossRefGoogle Scholar
  48. 48.
    Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24:1596–9.CrossRefGoogle Scholar
  49. 49.
    Tanya P, Taeprayoon P, Hadkam Y, Srinives P. Genetic diversity among Jatropha and Jatropha-related species based on ISSR markers. Plant Mol Biol Rep. 2011;29:252–64.CrossRefGoogle Scholar
  50. 50.
    Yap IV, Nelson RJ. Winboot: a program for performing bootstrap analysis of binary data to determine the confidence of UPGMA-based dendrograms. Manila: IRRI; 1996.Google Scholar
  51. 51.
    Zubor AA, Surányi G, Győri Z, Borbély G, Prokisch J. Molecular biological approach of the systematics of Crocus sativus L. and its allies. In: Fernandez JA, Abdullaev F, editors. Proceedings of the first international symposium on saffron biology and biotechnology, vol. 650. Leuvens: Acta Horticulturae; 2004. p. 85–93.Google Scholar

Copyright information

© Archana Sharma Foundation of Calcutta 2019

Authors and Affiliations

  1. 1.Department of Plant Breeding and BiotechnologySari Agricultural Sciences and Natural Resources UniversitySariIran
  2. 2.Department of Seed and Plant Improvement, Khorasan Razavi Agricultural and Natural Resources Research and Education CenterAREEOMashhadIran
  3. 3.Department of Plant Protection, Khorasan Razavi Agricultural and Natural Resources Research and Education CenterAREEOMashhadIran

Personalised recommendations