The Nucleus

, Volume 62, Issue 1, pp 83–87 | Cite as

Chromosome studies on five species of aphids infesting Eleusine coracana host plant in Shimla hills, India

  • Anupriya Potan
  • D. C. GautamEmail author


In the present investigation, chromosome account of five species of aphids infesting Eleusine coracana (ragi) in hills of Shimla, Himachal Pradesh, India has been studied. These aphid species are a cause of great losses for the ragi crop which contributes significantly to the diet of hilly people. Aphid species studied are Brachycaudus helichrysi, Hysteroneura setariae, Rhopalosiphum maidis, Rhopalosiphum padi and Tetraneura nigriabdominalis. Karyotypes were prepared from the well spread metaphase plates. Diploid number was found to be 2n = 12 in B. helichrysi and H. setariae, 2n = 8,10 in R. maidis, 2n = 8 in R. padi and 2n = 18 in T. nigriabdominalis. The actual length and total complement length data was used to calculate the relative length of chromosomes and to construct the idiograms. Based on relative lengths of chromosome and idiograms, we find significant species specific diagnostic differences in the length of shortest chromosomes of T. nigriabdominalis and Rhopalosiphum species.


Chromosome Eleusine coracana Idiogram Karyotype 



The authors are grateful to the Department of Biosciences, Himachal Pradesh University, Shimla for providing the necessary laboratory facilities for this research work.

Author contributions

Practical work has been done by Ms. Anupriya under the supervision of Prof. (Dr.) D.C. Gautam. Data analysis has been done by both the authors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Blackman RL. Chromosome numbers in the Aphididae and their taxonomic significance. Syst Entomol. 1980;5:7–25.CrossRefGoogle Scholar
  2. 2.
    Blackman RL. The chromosomes of Japanese Aphididae (Homoptera), with notes on the cytological work of Orihay Shinji. Cytologia. 1986;51:59–83.CrossRefGoogle Scholar
  3. 3.
    Blackman RL, Eastop VF. Aphids on world’s crops: an identification and information guide. Chichester: Wiley; 1984.Google Scholar
  4. 4.
    Blackman RL, Eastop VF. Aphids of the world’s herbaceous plants and shrubs: an identification and information guide. Chichester: Wiley; 2006.Google Scholar
  5. 5.
    Blackman RL, Eastop VF. Aphids on the world’s plants. 2016. Accessed 18 Mar 2016.
  6. 6.
    Chakrabarti S, Maity SP. Aphids of north west India: new subgenus, new species and new records of root-inhabiting aphids. Entomon. 1978;3:265–7.Google Scholar
  7. 7.
    Chattopadhay D, Das PL, Raychaudhuri D. Karyotype variation of Rhopalosiphum maidis (Fitch) (Homoptera: Aphididae). Entomon. 1982;7:441–6.Google Scholar
  8. 8.
    Chen XS, Zhang GX. The karyotypes of 51 species of aphids (Homoptera, Aphidoidea) in Beijing area. Acta Zool Sin. 1985;31:12–9.Google Scholar
  9. 9.
    De Barro PJ. Karyotypes of cereal aphids in south Australia with special reference to Rhopalosiphum maidis (Fitch) (Hemiptera: Aphididae). Aust J Entomol Soc. 1992;31:333–4.CrossRefGoogle Scholar
  10. 10.
    Devi PB, Vijayabharathi R, Sathyabama S, Malleshi NG, Priyadarisini VB. Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber review. J Food Sci Technol. 2014;51:1021–40.CrossRefGoogle Scholar
  11. 11.
    Emden HFV, Harrington R. Aphids as crop pests. Trowbridge: Cromwell Press; 2007.CrossRefGoogle Scholar
  12. 12.
    Favret C. Aphid species file. Version 5.0/5.0. 2016. Accessed 15 Jan 2018.
  13. 13.
    Gavrilov-Zimin IA, Stekolshchikoe AV, Gautam DC. General trends of chromosomal evolution in Aphidococca (Insecta, Homoptera, Aphidinea + Coccinea). Comp Cytogenet. 2015;9:335–422.CrossRefGoogle Scholar
  14. 14.
    Hales DF, Cowen R. Genetic studies of Rhopalosiphum in Australia. Acta Phytopathol Entomol Hung. 1990;25:283–8.Google Scholar
  15. 15.
    Hughes-Schrader S, Schrader F. The kinetochore of the Hemiptera. Chromosoma. 1961;12:327–50.CrossRefGoogle Scholar
  16. 16.
    Kar I, Khuda-Bukhsh AR. Karyotypic studies on twelve species of aphids (Homoptera: Aphididae) from the north-eastern Himalayas. J Aphidol. 1989;3:42–53.Google Scholar
  17. 17.
    Kulkarni PP, Kacker RK. Chromosomes of six species of aphids (Homoptera: Aphididae). Bull Zool Surv India. 1981;3:249–51.Google Scholar
  18. 18.
    Kurl SP. Chromosome numbers of ten species of Indian aphids. Chromosome Inf Serv. 1978;25:17–8.Google Scholar
  19. 19.
    Manna GK. A checklist of chromosome numbers in aphids with comments. In: Behua BK, editor. The Aphids. New Delhi: Kalyani publishers; 1983. p. 160–93.Google Scholar
  20. 20.
    O’Kennedy MM, Grootboom A, Shewry PR. Harnessing sorghum and millet biotechnology for food and health. J Cereal Sci. 2006;44:224–35.CrossRefGoogle Scholar
  21. 21.
    Raychaudhuri D, Das PL. Importance of karyology in aphid taxonomy. Proc Indian Acad Sci. 1987;96:461–7.CrossRefGoogle Scholar
  22. 22.
    Raychaudhuri DN, Pal PK, Ghosh MR. Root infesting aphids of north east India. Entomon. 1978;3:239–64.Google Scholar
  23. 23.
    Robinson AG, Chen YH. Cytotaxonomy of Aphididae. Can J Zool. 1969;47:511–6.CrossRefGoogle Scholar
  24. 24.
    Samkaria R, Bala J, Gautam DC. Karyotype studies on some commonly occurring aphid species. Nucleus. 2010;53:55–9.CrossRefGoogle Scholar
  25. 25.
    Sun RY, Robinson AG. Chromosome studies on 50 species of aphids. Can J Zool. 1966;44:649–53.CrossRefGoogle Scholar

Copyright information

© Archana Sharma Foundation of Calcutta 2018

Authors and Affiliations

  1. 1.Department of BiosciencesHimachal Pradesh UniversityShimlaIndia

Personalised recommendations