The Nucleus

, Volume 61, Issue 2, pp 95–104 | Cite as

Male meiosis in 18 species of 07 genera of the tribe Astereae (Asteraceae) from Western Himalaya

  • Raghbir Chand Gupta
  • Henna Goyal
  • Vijay Singh
  • Rajesh Kumar Goel
Original Article


Meiotic studies in 18 species belonging to 7 genera of the tribe Astereae from various localities of Western Himalaya have been analyzed. The chromosome number has been reported for the first time in Aster albescens (n = 9) and A. indamellus (n = 9). Further, intraspecific variability has been reported for the first time in A. thomsonii (n = 27), Bellis perennis (n = 5) and Myriactis nepalensis (n = 18). In India, the chromosome numbers are reported for first time in Aster himalaicus (n = 9), Brachyactis roylei (n = 9), Erigeron bellidioides (n = 9) and E. borealis (n = 9). B-chromosomes have been reported for the first time in Erigeron acer (n = 9 + 1 − 2B). Besides, most of the populations show laggards, chromosome stickiness and cytomixis from early prophase to telophase-II, leading to the formation of aneuploid cells or meiocytes with doubled chromosome number. Such meiotic abnormalities produce unreduced pollen grains and adversely affect pollen viability.


Astereae Aster Bellis Brachyactis Conyza Erigeron Myriactis Psychrogeton Chromosomal studies Meiotic abnormalities Western Himalaya 



The authors are grateful to the University Grants Commission and Department of Biotechnology, New Delhi for financial assistance received under (DRS SAP III), UGC-BSR Fellowship scheme (Award Letter No. 6007/04/04/2013), and IPLS-DBT (Reference number: BT/PR 548/INF/22/146/2012) to conduct the above research. The authors are also thankful to the Head, Department of Botany, Punjabi University, Patiala for providing necessary lab facilities during the work. Thanks are also due to Late Sh. Kishan Lal, who assisted the authors with his intense field knowledge during the sample collection tours.


  1. 1.
    Anderson L, Kyhos D, Mosquin T, Powell A, Raven P. Chromosome numbers in Compositae. IX. Haplopappus and other Astereae. Am J Bot. 1974;61:665–71.CrossRefGoogle Scholar
  2. 2.
    Bala S, Kaushal B, Goyal H, Gupta RC. A case of synaptic mutant in Erigeron karvinskianus DC. (Latin American fleabane). Cytologia. 2010;75(3):299–304.CrossRefGoogle Scholar
  3. 3.
    Baptista-Giacomelli FR, Pagliarini MS, Almeida JL. Meiotic behaviour in several Brazilian oat cultivars (Avena sativa L.). Cytologia. 2000;65:371–8.CrossRefGoogle Scholar
  4. 4.
    Brouillet L, Allen GA, Semple JC, Ito M. ITS phylogeny of North American asters (Asteraceae: Astereae): basal grade to North American lineages and distinct from Eurasian ones, CBA/ABC Meeting, Kelowna, BC; 2001.Google Scholar
  5. 5.
    Chen YL, Chen YS, Brouillet L, Semple JC. Astereae. In: Wu ZY, Raven PH, Hong DY, editors. Flora of China (Asteraceae), vol. 20–21. Beijing: Science Press & St. Louis: Missouri Botanical Garden Press; 2011. p. 545–652.Google Scholar
  6. 6.
    Chevallier A. Encyclopedia of Medicinal Plants. New York: DK Publishing; 1996.Google Scholar
  7. 7.
    Dorn R. Asters retreat to Eurasia. Castilleja. 2003;22:3.Google Scholar
  8. 8.
    Dowd MA, Gaulden ME, Proctor BL, Seibert GB. Formaldehyde-induced acentric chromosome fragments and chromosome stickiness in Chortophaga neuroblasts. Environ Mutagen. 1986;8:401–11.CrossRefPubMedGoogle Scholar
  9. 9.
    Falistocco E, Tosti N, Falcinelli M. Cytomixis in pollen mother cells of diploid Dactylis one of the origins of 2n gametes. J Hered. 1995;86:448–53.CrossRefGoogle Scholar
  10. 10.
    Fedorov ANA. Chromosome number of flowering plants. Leningrad: Academy of Science of the USSR Komarov Botanical Institute; 1969.Google Scholar
  11. 11.
    Gadella TWJ, Kliphuis E. Chromosome numbers of flowering plants in the Netherlands IV. Proc R Neth Acad Sci Ser C. 1968;71:168–83.Google Scholar
  12. 12.
    Gaulden ME. Hypothesis: some mutagens directly alter specific chromosomal proteins (DNA topoisomerase II and peripheral proteins) to produce chromosome stickiness, which causes chromosome aberrations. Mutagen. 1987;2:357–65.CrossRefGoogle Scholar
  13. 13.
    Ghaffari SM. Occurrence of diploid and polyploid microspores in Sorghum bicolor (Poaceae) is the result of cytomixis. Afr J Biotechnol. 2006;5:1450–3.Google Scholar
  14. 14.
    Ghanima AM, Talaat AA. Cytomixis and its possible evolutionary role in a Kuwait population of Diplotaxis harra (Boraginaceae). Bot J Linn Soc. 2003;143:169–75.CrossRefGoogle Scholar
  15. 15.
    Goldblatt P. Index to plant chromosome numbers 1975–1978, 1979–1981, 1982–1983, 1984–1985. Monographs in Systematic Botany. Missouri Botanical Garden, USA. Vols 5, 8, 13, 23; 1981; 1984; 1985; 1988.Google Scholar
  16. 16.
    Goldblatt P, Johnson DE. Index to plant chromosome numbers 1986–1987, 1988– 1989, 1990–1991, 1992–1993, 1994–1995, 1996–1997, 1998–2000, 2001–2003. Monographs in Systematic Botany. Missouri Botanical Garden, USA. Vols 30, 40, 51, 58, 69, 81, 94, 106, 1990, 1991, 1994, 1996, 1998, 2000, 2003, 2006.Google Scholar
  17. 17.
    Gupta RC, Gill BS, Garg RK. Chromosomal conspectus of Western Himalayan Compositae. Asp Plant Sci. 1989;11:427–37.Google Scholar
  18. 18.
    Grau J. Astereae-systematic treatment. In: Heywood VH, Harborne JB, Turner BL, editors. The biology and chemistry of the compositae. London: Academic Press; 1977.Google Scholar
  19. 19.
    Haroun SA. AL-Shehri AM, AL-Wadie HM. Cytomixis in the microsporogenesis of Vicia faba L. (Fabaceae). Cytologia. 2004;69:7–11.CrossRefGoogle Scholar
  20. 20.
    Huber W. Biosystematisch-ökologische Untersuchungen an den Erigeron-Arten (Asteraceae) der Alpen. Veröff. Geobot. Inst. ETH Stiftung Rübel Zürich. 1993;114:1–143.Google Scholar
  21. 21.
    Huziwara Y. Karyotype analysis in some genera of Compositae. I1. The karyotype of Japanese Aster species. Cytologia. 1957;22:96–112.CrossRefGoogle Scholar
  22. 22.
    Huziwara Y. Karyotype analysis in some genera of compositae. III. The karyotype of the Aster ageratoides group. Am J Bot. 1957;44:83–790.CrossRefGoogle Scholar
  23. 23.
    Huziwara Y. Karyotype analysis in some genera of Compositae. IV. The karyotypes within the genera Gymnaster, Kalimeris and Heteropappus. Cytologia. 1958;23:33–45.CrossRefGoogle Scholar
  24. 24.
    Huziwara Y. Karyotype analysis in some genera of compositae VIII. Further studies on the chromosomes of Aster. Am J Bot. 1962;49:116–9.CrossRefGoogle Scholar
  25. 25.
    Jafari F, Osaloo SK, Mozffarian V. Molecular phylogeny of the tribe Astereae (Asteraceae) in SW Asia based on nrDNA ITS and cpDNA psbA-trnH sequences. Willdenowia. 2015;45:77–92.CrossRefGoogle Scholar
  26. 26.
    Kaur D, Singhal VK. IAPT/IOPB chromosome data 13. Taxon. 2013;61:6–7.Google Scholar
  27. 27.
    Keil DJ, Luckow MA, Pinkava DJ. Chromosome studies in Asteraceae from the United States, Mexico, the West Indies, and South America. Am J Bot. 1988;75:652–68.CrossRefGoogle Scholar
  28. 28.
    Khatoon S, Ali SI. Chromosome atlas of the angiosperms of Pakistan. Department of Botany, University of Karachi, Karachi; 1993.Google Scholar
  29. 29.
    Kim JS, Oginuma K, Tobe H. Syncyte formation in the microsporangium of Chrysanthemum (Asteraceae): a pathway to infraspecific polyploidy. J Plant Res. 2009;122:439–44.CrossRefPubMedGoogle Scholar
  30. 30.
    Koul MLH. Cytology of some Compositae. J Sci Res Banaras Hindu Univ. 1964;14:20–2.Google Scholar
  31. 31.
    Kumar V, Subramaniam B. Chromosome atlas of flowering plants of the Indian subcontinent. Dicotyledons., vol. 1. Calcutta: Botanical Survey of India; 1986.Google Scholar
  32. 32.
    Kuzmanov B, Georgieva S. IOPB chromosome number reports LXXXI. Taxon. 1983;32:665.Google Scholar
  33. 33.
    Levan A. Syncyte formation in the pollen mother cells of haploid Phleum pratense. Hereditas. 1941;27:243–53.CrossRefGoogle Scholar
  34. 34.
    Li XF, Song ZQ, Feng DS, Wang HG. Cytomixis in Thinopyrum intermedium, T. ponticum and its hybrids with wheat. Cereal Res Commun. 2009;37:353–61.CrossRefGoogle Scholar
  35. 35.
    Lim TK. Edible medicinal and non-medicinal plants. Fruits. 2013. Scholar
  36. 36.
    Mehra PN, Gill BS, Mehta JK, Sidhu SS. Cytological investigations on the Indian compositae. I. North-Indian taxa. Caryologia. 1965;18:35–68.CrossRefGoogle Scholar
  37. 37.
    Mehra PN, Remanandan R. Cytological investigations on Indian compositae II. Astereae, Heliantheae, Helenieae and Anthemideae. Caryologia. 1974;1974(27):255–84.CrossRefGoogle Scholar
  38. 38.
    Morton JK. A cytological study of the compositae (excluding Hieracium and Taraxacum) of the British Isles. Watsonia. 1977;11:211–23.Google Scholar
  39. 39.
    Moore RJ. Index to plant chromosome numbers. 1967–1971, 1972. 1973–74. Regnum Veg 90, 91, 96; 1973, 1974, 1977.Google Scholar
  40. 40.
    Narain P. Cytomixis in pollen mother cells of Hemerocallis L. Curr Sci. 1976;48:996–8.Google Scholar
  41. 41.
    Nesom GL. Subtribal classification of the Astereae (Asteraceae). Phytologia. 1994;76:193–274.Google Scholar
  42. 42.
    Nesom GL, Robinson H. Astereae. In: Kadereit JW, Jeffrey C. editors. Families and genera of vascular plants, vol. 8, Flowering plants—Eudicots—Asterales, in series Kubitzki K. (ed.) Encyclopedia of vascular plants. Berlin: Springer, 2017; pp 316–376.Google Scholar
  43. 43.
    Nicklas RB, Ward SC. Elements of error correction in mitosis: microtubule capture, release and tension. Cell Biol. 1994;126:1241–53.CrossRefGoogle Scholar
  44. 44.
    Nirmala A, Rao PN. Genetics of chromosome numerical mosaicism in higher plants. Nucleus. 1996;39:151–75.Google Scholar
  45. 45.
    Noyes RD, Rieseberg LH. ITS sequence data support a single origin of North American Astereae (Asteraceae) and reflect deep geographic division in Aster. Amer J Bot. 1999;86:398–412.CrossRefGoogle Scholar
  46. 46.
    Pagliarini MS, et al. Analysis of meiotic behaviour in selecting potential genitors among diploid and artificially induced tetraploid accessions of Brachiaria ruziziensis (Poaceae). Euphytica. 2008;164:181–7.CrossRefGoogle Scholar
  47. 47.
    Pagliarini MS. Meiotic behaviour of economically important plant species: the relationship between fertility and male sterility. Genet Mol Biol. 2000;23:997–1002.CrossRefGoogle Scholar
  48. 48.
    Podlech D, Dieterle A. Chromosomenstudien an afghanischen Pflanzen. Candollea. 1969;24:185–243.Google Scholar
  49. 49.
    Pullaiah T. Encyclopedia of World medicinal plants, vol. 5. New Delhi: Daya Publications; 2006.Google Scholar
  50. 50.
    Ranjbar M, Karamian R, Nouri S. Impact of cytomixis on meiosis in Astragalus cyclophyllos Beck (Fabaceae) from Iran. Caryologia. 2011;64:256–64.CrossRefGoogle Scholar
  51. 51.
    Raven PH, Solbrig OT, Kyhos DW, Snow R. Chromosome numbers in compositae. I. Astereae. Am J Bot. 1959;47:124–32.CrossRefGoogle Scholar
  52. 52.
    Risso-Pascotto C, Pagliarini MS, Valle CB. Microsporogenesis in Brachiaria bovonei (Chiov.) Robyns and B. subulifolia (Mez.) Clayton (Poaceae). Sci Agric. 2009;66:691–6.CrossRefGoogle Scholar
  53. 53.
    Risso-Pascotto C, et al. Microsporogenesis in Brachiaria dictyoneura Stapf (Poaceae: Paniceae). Genet Mol Res. 2006;5:837–45.PubMedGoogle Scholar
  54. 54.
    Sharmila S, Kalaichelvi M, Rajeswari M, Anjanadevi N. Studies on the folklore medicinal uses of some indigenous plants among the tribes of Thiashola, Manjoor, Nilgiris south division, Western Ghats. Int J Plant Anim Environ Sci. 2014;4:15–22.Google Scholar
  55. 55.
    Sheidai M, Bagheri-Shabestarei ES. Cytomixis and unreduced pollen formation in some Festuca L. species of Iran. Caryologia. 2007;60:364–71.CrossRefGoogle Scholar
  56. 56.
    Sheidai M, Koobaz P, Zehzad B. Meiotic studies of some Avena L. species and populations. Iran J Sci. 2003;14:121–31.Google Scholar
  57. 57.
    Singhal VK, Rana PK, Kumar P. Syncytes during male meiosis resulting in 2n pollen grain formation in Lindefolia longiflora var. falconeri. J Syst Evol. 2011;49:406–10.CrossRefGoogle Scholar
  58. 58.
    Singhal VK, Kumar P. Impact of cytomixis on meiosis, pollen viability and pollen size in wild populations of Himalayan poppy (Meconopsis aculeate Royle). J Biosci. 2008;33:371–80.CrossRefPubMedGoogle Scholar
  59. 59.
    Solbrig OT, Anderson LC, Kyhos DW, Raven PH, Rudenberg L. Chromosome numbers in compositae. V. Astereae II. Am J Bot. 1964;51:513–9.CrossRefGoogle Scholar
  60. 60.
    Strother J. Chromosome studies in western North American compositae. Am J Bot. 1972;59:242–7.CrossRefGoogle Scholar
  61. 61.
    Tornadore N, Bonomi M, Marcucci R, Barcaccia G, Parrini P, Lucchin M. Morphological, karyological, and molecular analysis in Aster spp. (Asteraceae). Isr J Plant Sci. 2003;51:109–16.CrossRefGoogle Scholar
  62. 62.
    Turner BL, Ellison WL, King RM. Chromosome numbers in the compositae. IV. North American species with phylogenetic interpretations. Am J Bot. 1961;48:216–33.CrossRefGoogle Scholar
  63. 63.
    Utsunomiya KS, et al. Microsporogenesis in tetraploid accessions of Brachiaria nigropedata (Ficalho–Hiern) Stapf (Gramineae). Biocell. 2005;29:295–300.PubMedGoogle Scholar
  64. 64.
    Utsunomiya KS, Bione NCP, Pagliarini MS. How many different kinds of meiotic abnormalities could be found in a unique endogamous maize plant? Cytologia. 2002;67:169–76.CrossRefGoogle Scholar
  65. 65.
    Zhao XG, et al. Zi wan (III): a comparison of the herbs expectorant and antitussive effects among different origins. J Chin Mater Med. 1999;30:353–7.Google Scholar
  66. 66.
    Zhang X, Bremer K. A cladistic arlalysis of the tribe Astereae (Asteraceae) with notes on their evolution and subtribal classification. PIant Syst Evol. 1993;184:259–83.CrossRefGoogle Scholar
  67. 67.
    Zheng GC, Yang Q, Zheng Y. The relationship between cytomixis, chromosome mutation and karyotype evolution in lily. Caryologia. 1987;40:243.CrossRefGoogle Scholar

Copyright information

© Archana Sharma Foundation of Calcutta 2018

Authors and Affiliations

  1. 1.Department of BotanyPunjabi UniversityPatialaIndia
  2. 2.Department of Pharmaceutical Sciences and Drug ResearchPunjabi UniversityPatialaIndia

Personalised recommendations