The Nucleus

, Volume 60, Issue 3, pp 335–348 | Cite as

An insight into plant–Tomato leaf curl New Delhi virus interaction

  • Namisha Sharma
  • Manoj PrasadEmail author
Review Article


Plants being sessile are constantly exposed to several stresses, which involve different types of abiotic and biotic stress factors. Biotic stress in plants is caused by various living organisms called plant pathogens including bacteria, viruses, fungi and parasites. Among these pathogens, plant viruses cause severe damage to world agricultural productivity. The reason behind such widespread destruction caused by viruses is their ability to frequently evolve them through mutation and genetic recombination, to succeed over the unfavourable conditions. The virus infects both susceptible and tolerant/resistant plants by the similar and systematic manner but resistant/tolerant plants combat the virus spread and suppress the viral growth. When pathogen enters the plant system, diverse defense responses are initiated which are mediated by plant disease resistance genes (R genes) mediated resistance and hormone based signaling pathways which restrict the viral spread by initiating hypersensitive response. To further enhance our knowledge regarding resistance mechanisms, the virus infection pattern and interactions of virus within resistant and susceptible plants needs to be analysed. At present, most successful strategy involves deployment of crops possessing resistance/tolerance against viruses with the foremost interest of detecting genes associated with resistance or recovery. Among several plant viruses, ‘Geminiviruses’ are the most devastating. In this article we have provided a comprehensive overview of Tomato leaf curl New Delhi virus (ToLCNDV), a member of family Geminiviridae and the plant defense system initiated against this virus. The evaluation of ToLCNDV infection in a variety of hosts differing in their tolerance and identification of differentially expressed genes would be helpful in speculating the threats associated with similar begomoviral invasions.


ToLCNDV Epigenetics Host–virus interaction Virus resistance 



The authors’ work in the area of plant-virus interaction was supported by the core grant of National Institute of Plant Genome Research (NIPGR), New Delhi. N.S. and M.P. acknowledges the award of Senior Research Fellowship and TATA Innovation Fellowship (BT/HRD/35/01/02/2017) from Department of Biotechnology, Govt. of India, India, respectively.

Compliance with ethical standards

Conflict of interest



  1. 1.
    Amari K, Gonzalez-Ibeas D, Gomez P, Sempere RN, Sanchez-Pina MA, Aranda MA, et al. Tomato torrado virus is transmitted by Bemisia tabaci and infects pepper and eggplant in addition to tomato. Plant Dis. 2008;92:1139.CrossRefGoogle Scholar
  2. 2.
    Anbinder I, Reuveni M, Azari R, Paran I, Nahon S, Shlomo H, et al. Molecular dissection of tomato leaf curl virus resistance in tomato line TY172 derived from Solanum peruvianum. Theor Appl Genet. 2009;119:519–30.PubMedCrossRefGoogle Scholar
  3. 3.
    Arguello-Astorga G, Lopez-Ochoa L, Kong LJ, Orozco BM, Settlage SB, Hanley-Bowdoin L. A novel motif in geminivirus replication proteins interacts with the plant retinoblastoma-related protein. J Virol. 2004;78:4817–26.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Ascencio-Ibanez JT, Sozzani R, Lee TJ, Chu TM, Wolfinger RD, Cella R, et al. Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol. 2008;148:436–54.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Bagewadi B, Chen S, Lal SK, Choudhury NR, Mukherjee SK. PCNA interacts with Indian mung bean yellow mosaic virus Rep and downregulates Rep activity. J Virol. 2004;78:11890–903.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Baltes NJ, Hummel AW, Konecna E, Cegan R, Bruns AN, Bisaro DM, et al. Conferring resistance to geminiviruses with the CRISPR-Cas prokaryotic immune system. Nat Plants. 2015;1:15145.CrossRefGoogle Scholar
  7. 7.
    Bendahmane A, Kanyuka K, Baulcombe DC. The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell. 1999;11:781–91.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Berger SL. The complex language of chromatin regulation during transcription. Nature. 2007;447:407–12.PubMedCrossRefGoogle Scholar
  9. 9.
    Bhattacharjee P, Das R, Mandal A, Kundu P. Functional characterization of tomato membrane-bound NAC transcription factors. Plant Mol Biol. 2017;93:511–32.PubMedCrossRefGoogle Scholar
  10. 10.
    Briddon RW, Pinner MS, Stanley J, Markham PG. Geminivirus coat protein gene replacement alters insect specificity. Virology. 1990;177:85–94.PubMedCrossRefGoogle Scholar
  11. 11.
    Butter NS, Rataul HS. The virus vector relationship of the tomato leaf curl virus (TLCV) and its vector Bemisia tabaci Gennadius (Homoptera: Aleyrodidae.). Phytoparasitica. 1977;5:173–86.CrossRefGoogle Scholar
  12. 12.
    Castillo AG, Kong LJ, Hanley-Bowdoin L, Bejarano ER. Interaction between a geminivirus replication protein and the plant sumoylation system. J Virol. 2004;78:2758–69.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Chandel RS, Banyal DK, Singh BP, Malik K, Lakra BS. Integrated management of whitefly, Bemisia tabaci (Gennadius) and potato apical leaf curl virus in India. Potato Res. 2010;53:129–39.CrossRefGoogle Scholar
  14. 14.
    Chellappan P, Vanitharani R, Fauquet CM. MicroRNA-binding viral protein interferes with Arabidopsis development. Proc Natl Acad Sci USA. 2005;102:10381–6.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Cooley MB, Pathirana S, Wu H-J, Kachroo P, Klessig DF. Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Plant Cell. 2000;12:663–76.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Dalakouras A, Dadami E, Wassenegger M. Viroid-induced DNA methylation in plants. Biomol Concepts. 2013;4:557–65.PubMedCrossRefGoogle Scholar
  17. 17.
    De Barro PJ, Ahmed MZ. Genetic networking of the Bemisia tabaci cryptic species complex reveals pattern of biological invasions. PLoS ONE. 2011;6:e25579.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Deuschle K, Kepp G, Jeske H. Differential methylation of the circular DNA in geminiviral minichromosomes. Virology. 2016;499:243–58.PubMedCrossRefGoogle Scholar
  19. 19.
    Dielen AS, Badaoui S, Candresse T, German-Retana S. The ubiquitin/26S proteasome system in plant-pathogen interactions: a never-ending hide-and-seek game. Mol Plant Pathol. 2010;11:293–308.PubMedCrossRefGoogle Scholar
  20. 20.
    Emmanuel E, Levy AA. Tomato mutants as tools for functional genomics. Curr Opin Plant Biol. 2002;5:112–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Espinas NA, Saze H, Saijo Y. Epigenetic control of defense signaling and priming in plants. Front Plant Sci. 2016;11:1201.Google Scholar
  22. 22.
    Fauquet CM, Briddon RW, Brown JK, Moriones E, Stanley J, Zerbini FM, et al. Geminivirus strain demarcation and nomenclature. Arch Virol. 2008;153:783–821.PubMedCrossRefGoogle Scholar
  23. 23.
    Fontes EPB, Santos AA, Luz DF, Waclawovsky AJ, Chory J. The geminivirus nuclear shuttle protein is a virulence factor that suppresses transmembrane receptor kinase activity. Genes Dev. 2004;18:2545–56.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Fontes EPB, Gladfelter HJ, Schaffer RL, Petty IT, Hanley-Bowdoin L. Geminivirus replication origins have a modular organization. Plant Cell. 1994;6:405–16.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Fukunaga R, Doudna JA. dsRNA with 5′ overhangs contributes to endogenous and antiviral RNA silencing pathways in plants. EMBO J. 2009;28:545–55.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Gafni Y, Epel BL. The role of host and viral proteins in intra- and inter-cellular trafficking of geminiviruses. Physiol Mol Plant Pathol. 2002;60:231–41.CrossRefGoogle Scholar
  27. 27.
    Gebhardt C. The historical role of species from the Solanaceae plant family in genetic research. Theor Appl Genet. 2016;129:2281–94.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Gehring M, Reik M, Henikoff S. DNA demethylation by DNA repair. Trends Genet. 2009;25:82–90.PubMedCrossRefGoogle Scholar
  29. 29.
    Gutierrez C. DNA replication and cell cycle in plants: learning from geminiviruses. EMBO J. 2000;19:792–9.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Haag JR, Pikaard CS. Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing. Nat Rev Mol Cell Biol. 2011;12:483–92.PubMedCrossRefGoogle Scholar
  31. 31.
    Hanley-Bowdoin L, Bejarano ER, Robertson D, Mansoor S. Geminiviruses: masters at redirecting and reprogramming plant processes. Nat Rev Microbiol. 2013;11:777–88.PubMedCrossRefGoogle Scholar
  32. 32.
    Hanssen IM, Lapidot M, Thomma BP. Emerging viral diseases of tomato crops. Mol Plant-Microbe Int. 2010;23:539–48.CrossRefGoogle Scholar
  33. 33.
    Hatsugai N, Iwasaki S, Tamura K, Kondo M, Fuji K, Ogasawara K, et al. A novel membrane fusion-mediated plant immunity against bacterial pathogens. Genes Dev. 2009;23:2496–506.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Hayes AJ, Jeong SC, Gore MA, Yu YG, Buss GR, Tolin SA, et al. Recombination within a nucleotide-binding-site/leucine-rich-repeat gene cluster produces new variants conditioning resistance to soybean mosaic virus in soybeans. Genetics. 2004;166:493–503.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Hussain M, Mansoor S, Iram S, Zafar Y, Briddon RW. First report of Tomato leaf curl New Delhi virus affecting chilli pepper in Pakistan. Plant Pathol. 2004. doi: 10.1111/j.1365-3059.2004.01073.x.Google Scholar
  36. 36.
    Hutton SF, Scott JW, Schuster DJ. Recessive resistance to Tomato yellow leaf curl virus from the tomato cultivar Tyking is located in the same region as Ty-5 on chromosome 4. HortScience. 2012;47:324–7.Google Scholar
  37. 37.
    Ingham DJ, Pascal E, Lazarowitz SG. Both bipartite geminivirus movement proteins define viral host range, but only BL1 determines viral pathogenicity. Virology. 1995;207:191–204.PubMedCrossRefGoogle Scholar
  38. 38.
    Ishibashi K, Mawatari N, Miyashita S, Kishino H, Mashi T, Ishikawa M. Coevolution and hierarchical interactions of Tomato mosaic virus and the resistance gene Tm-1. PLoS Pathog. 2012;8:e1002975.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Jackel JN, Storer JM, Coursey T, Bisaro DM. Arabidopsis RNA polymerases IV and V are required to establish H3K9 methylation, but not cytosine methylation, on Geminivirus chromatin. J Virol. 2016;90:7529–40.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Jeevalatha A, Siddappa S, Kumar A, Kaundal P, Guleria A, Sharma S, et al. An insight into differentially regulated genes in resistant and susceptible genotypes of potato in response to tomato leaf curl New Delhi virus-[potato] infection. Virus Res. 2017;15:22–33.CrossRefGoogle Scholar
  41. 41.
    Ji X, Zhang H, Zhang Y, Wang Y, Gao C. Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants. Nat Plants. 2015;1:15144.PubMedCrossRefGoogle Scholar
  42. 42.
    Ji Y, Scott JW, Schuster DJ, Maxwell DP. Molecular mapping of Ty-4, a new Tomato Yellow Leaf Curl Virus resistance locus on chromosome 3 of tomato. Hortic Sci. 2009;134:281–8.Google Scholar
  43. 43.
    Ji Y, Schuster DJ, Scott JW. Ty-3, a begomovirus resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Mol Breed. 2007;20:271–84.CrossRefGoogle Scholar
  44. 44.
    Jones JD, Dangle JL. The plant immune system. Nature. 2006;444:323–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Juarez M, Tovar R, Fiallo-Olive E, Aranda MA, Gosalvez B, Castillo P, et al. First detection of Tomato leaf curl new Delhi virus infecting zucchini in Spain. Plant Dis. 2014;98:857.CrossRefGoogle Scholar
  46. 46.
    Jupin I, De Kouchkovsky F, Jouanneau F, Gronenborn B. Movement of tomato yellow leaf curl geminivirus (TYLCV): involvement of the protein encoded by ORF C4. Virology. 1994;204:82–90.PubMedCrossRefGoogle Scholar
  47. 47.
    Jyothsna PQ, Haq QMI, Singh P, Sumiya KV, Praveen S, Rawat R, et al. Infection of tomato leaf curl New Delhi virus (ToLCNDV), a bipartite begomovirus with betasatellites, results in enhanced level of helper virus components and antagonistic interaction between DNA B and betasatellites. Appl Microbiol Biotechnol. 2013;97:5457–71.PubMedCrossRefGoogle Scholar
  48. 48.
    Khraiwesha B, Zhua JK, Zhuc J. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta. 2012;1819:137–48.CrossRefGoogle Scholar
  49. 49.
    Kumar V, Mishra SK, Rahman J, Taneja J, Sundaresan G, Mishra NS, et al. Mungbean yellow mosaic Indian virus encoded AC2 protein suppresses RNA silencing by inhibiting Arabidopsis RDR6 and AGO1 activities. Virology. 2015;486:158–72.PubMedCrossRefGoogle Scholar
  50. 50.
    Kushwaha N, Singh AK, Basu S, Chakraborty S. Differential response of diverse solanaceous hosts to tomato leaf curl New Delhi virus infection indicates coordinated action of NBS-LRR and RNAi-mediated host defense. Arch Virol. 2015;160:1499–509.PubMedCrossRefGoogle Scholar
  51. 51.
    Lacatus G, Sunter G. Functional analysis of bipartite begomovirus coat protein promoter sequences. Virology. 2008;376:79–89.PubMedCrossRefGoogle Scholar
  52. 52.
    Lapidot M, Karniel U, Gelbart D, Fogel D, Evenor D, Kutsher Y, et al. A novel route controlling begomovirus resistance by the messenger RNA surveillance factor pelota. PLoS Genet. 2015;11:e1005538.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Laufs J, Jupin I, David C, Schumacher S, Heyraud-Nitschke F, Gronenborn B. Geminivirus replication: genetic and biochemical characterization of Rep protein function, a review. Biochimie. 1995;77:765–73.PubMedCrossRefGoogle Scholar
  54. 54.
    Legg PJ, Shirima R, Tajebe SL, Guastella D, Boniface S, Jeremiah S, et al. Biology and management of Bemisia whitefly vectors of cassava virus pandemics in Africa. Pest Manag Sci. 2014;70:1446–53.PubMedCrossRefGoogle Scholar
  55. 55.
    Li F, Xu X, Huang C, Gu Z, Cao L, Hu T, et al. The AC5 protein encoded by Mungbean yellow mosaic India virus is a pathogenicity determinant that suppresses RNA silencing-based antiviral defenses. New Phytol. 2015;208:555–69.PubMedCrossRefGoogle Scholar
  56. 56.
    Li F, Pignatta D, Bendix C, Brunkard JO, Cohn MM, Tung J, et al. MicroRNA regulation of plant innate immune receptors. Proc Natl Acad Sci USA. 2012;109:1790–5.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Liu Y, Schiff M, Dinesh-Kumar SP. Involvement of MEK1 MAPKK, NTF6 MAPK, WRKY/MYB transcription factors, COI1 and CTR1 in N-mediated resistance to tobacco mosaic virus. Plant J. 2004;38:800–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Luque A, Sanz-Burgos AP, Ramirez-Parra E, Castellano MM, Gutierrez C. Interaction of geminivirus Rep protein with replication factor C and its potential role during geminivirus DNA replication. Virology. 2002;302:83–94.PubMedCrossRefGoogle Scholar
  59. 59.
    Maiti S, Paul S, Pal A. Isolation, characterization, and structure analysis of a non-TIR-NBS-LRR encoding candidate gene from MYMIV-resistant Vigna mungo. Mol Biotechnol. 2012;52:217–33.PubMedCrossRefGoogle Scholar
  60. 60.
    Malik PS, Kumar V, Bagewadi B, Mukherjee SK. Interaction between coat protein and replication initiation protein of Mung bean yellow mosaic India virus might lead to control of viral DNA replication. Virology. 2005;337:273–83.PubMedCrossRefGoogle Scholar
  61. 61.
    Mandal A, Sarkar D, Kundub S, Kundu P. Mechanism of regulation of tomato TRN1 gene expression in late infection with tomato leaf curl New Delhi virus (ToLCNDV). Plant Sci. 2015;241:221–37.PubMedCrossRefGoogle Scholar
  62. 62.
    McGarry RC, Barron YD, Carvalho MF, Hill JE, Gold D, Cheung E, et al. A novel Arabidopsis acetyltransferase interacts with the geminivirus movement protein NSP. Plant Cell. 2003;15:1605–18.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Melgarejo TA, Kon T, Rojas MR, Paz-Carrasco L, Zerbini FM, Gilbertson RL. Characterization of a new world monopartite begomovirus causing leaf curl disease of tomato in Ecuador and Peru reveals a new direction in geminivirus evolution. J Virol. 2013;87:5397–413.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Mizutani T, Daryono BS, Ikegami M, Natsuaki KT. First report of Tomato leaf curl New Delhi virus infecting cucumber in Central Java, Indonesia. Plant Dis. 2001;95:1485.CrossRefGoogle Scholar
  65. 65.
    Mnari-Hattab M, Zammouri S, Belkadhi MS, Bellon Dona D, Ben Nahia E, Hajlaoui MR. First report of Tomato leaf curl New Delhi virus infecting cucurbits in Tunisia. New Dis Rep. 2015;31:21.CrossRefGoogle Scholar
  66. 66.
    Momotaz A, Scott JW, Schuster DJ. Identification of quantitative trait loci conferring resistance to Bemisia tabaci in an F2 population of Solanum lycopersicum x Solanum habrochaites accession LA1777. J Am Soc Hortic Sci. 2010;135:134–42.Google Scholar
  67. 67.
    Moury B, Verdin E. Viruses of pepper crops in the mediterranean basin: a remarkable stasis. Adv Virus Res. 2012;84:127–62.PubMedCrossRefGoogle Scholar
  68. 68.
    Naqvi AR, Choudhury NR, Mukherjee SK. Mohd. Rizwanul Haq Q. In silico analysis reveals that several tomato microRNA/microRNA* sequences exhibit propensity to bind to tomato leaf curl virus (ToLCV) associated genomes and most of their encoded open reading frames (ORFs). Plant Physiol Biochem. 2011;49:13–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Naqvi AR, Sarwat M, Pradhan B, Choudhury NR, Haq QM, Mukherjee SK. Differential expression analyses of host genes involved in systemic infection of Tomato leaf curl New Delhi virus (ToLCNDV). Virus Res. 2011;160:395–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Naqvi AR, Haq QM, Mukherjee SK. MicroRNA profiling of tomato leaf curl New Delhi virus (ToLCNDV) infected tomato leaves indicates that deregulation of mir159/319 and mir172 might be linked with leaf curl disease. Virol J. 2010;7:281.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Padidam M, Beachy RN, Fauquet CM. The role of AV2 (“precoat”) and coat protein in viral replication and movement in tomato leaf curl geminivirus. Virology. 1996;224:390–404.PubMedCrossRefGoogle Scholar
  72. 72.
    Padidam M, Beachy RN, Fauquet CM. Tomato leaf curl geminivirus from India has a bipartite genome and coat protein is not essential for infectivity. J GenVirol. 1995;76:25–35.Google Scholar
  73. 73.
    Padidam M, Beachy RN, Fauquet CM. Classification and identification of Geminiviruses using sequence comparisons. J Gen Virol. 1995;76:249–63.PubMedCrossRefGoogle Scholar
  74. 74.
    Padmanabhan MS, Ma S, Burch-Smith TM, Czymmek K, Huijser P, Dinesh Kumar SP. Novel positive regulatory role for the SPL6 transcription factor in the N TIR-NB-LRR receptor-mediated plant innate immunity. PLoS Pathog. 2013;9:e1003235.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Pandey G, Sharma N, Sahu PP, Prasad M. Chromatin-based epigenetic regulation of plant abiotic stress response. Curr Genom. 2016;17:490–8.CrossRefGoogle Scholar
  76. 76.
    Panno S, Iacono G, Davino M, Marchione S, Zappardo V, Bella P, et al. First report of Tomato leaf curl New Delhi virus affecting zucchini squash in an important horticultural area of southern Italy. New Dis Rep. 2016;33:6.CrossRefGoogle Scholar
  77. 77.
    Park J, Hwang HS, Buckley KJ, Park JB, Auh CK, Kim DG, et al. C4 protein of Beet severe curly top virus is a pathomorphogenetic factor in Arabidopsis. Plant Cell Rep. 2010;29:1377–89.PubMedCrossRefGoogle Scholar
  78. 78.
    Pasumarthy KK, Mukherjee SK, Choudhury NR. The presence of tomato leaf curl Kerala virus AC3 protein enhances viral DNA replication and modulates virus induced gene-silencing mechanism in tomato plants. Virol J. 2011;8:178.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Pasumarthy KK, Choudhury NR, Mukherjee SK. Tomato leaf curl Kerala virus (ToLCKeV) AC3 protein forms a higher order oligomer and enhances ATPase activity of replication initiator protein (Rep/AC1). Virol J. 2010;7:128.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Patil BL, Fauquet CM. Studies on differential behavior of cassava mosaic geminivirus DNA components, symptom recovery patterns, and their siRNA profiles. Virus Genes. 2015;50:474–86.PubMedCrossRefGoogle Scholar
  81. 81.
    Pelham J. Resistance in tomato to Tobacco mosaic virus. Euphytica. 1996;15:258.CrossRefGoogle Scholar
  82. 82.
    Pradhana B, Naqvi AR, Saraf S, Mukherjee SK, Deya N. Prediction and characterization of Tomato leaf curl New Delhi virus (ToLCNDV) responsive novel microRNAs in Solanum lycopersicum. Virus Res. 2015;2:183–95.CrossRefGoogle Scholar
  83. 83.
    Prasanna H, Sinha D, Rai G, Krishna R, Kashyap SP, Singh N, et al. Pyramiding Ty-2 and Ty-3 genes for resistance to monopartite and bipartite tomato leaf curl viruses of India. Plant Pathol. 2015;64:256–64.CrossRefGoogle Scholar
  84. 84.
    Pratap D, Kashikar AR, Mukherjee SK. Molecular characterization and infectivity of a Tomato leaf curl New Delhi virus variant associated with newly emerging yellow mosaic disease of eggplant in India. Virol J. 2011;8:305.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Raja P, Jackel JN, Li S, Heard IM, Bisaro DM. Arabidopsis double-stranded RNA binding protein DRB3 participates in methylation-mediated defense against geminiviruses. J Virol. 2014;88:2611–22.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Rajeswaran R, Seguina J, Chabannesc M, Duroyc PO, Laboureauc N, Farinellib L, et al. Evasion of short interfering RNA-directed antiviral silencing in Musa acuminata persistently infected with six distinct banana streak pararetroviruses. J Virol. 2014;88:11516–28.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Rodríguez-Negrete EA, Lozano-Duran R, Piedra-Aguilera A, Cruzado L, Bejarano ER, Castillo AG. Geminivirus Rep protein interferes with the plant DNA methylation machinery and suppresses transcriptional gene Silencing. New Phytol. 2013;199:464–75.PubMedCrossRefGoogle Scholar
  88. 88.
    Rodriguez-Negrete EA, Carrillo-Tripp J, Rivera-Bustamante RF. RNA silencing against Geminivirus: complementary action of posttranscriptional gene silencing and transcriptional gene silencing in host recovery. J Virol. 2009;83:1332–40.PubMedCrossRefGoogle Scholar
  89. 89.
    Ronde DD, Butterbach P, Kormelink R. Dominant resistance against plant viruses. Front Plant Sci. 2014;5:307.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Rouhibakhsh A, Choudhury NR, Mukherjee SK, Malathi VG. Enhanced nicking activity of Rep in presence of pre-coat protein of Mungbean yellow mosaic India virus. Virus Genes. 2012;44:356–61.PubMedCrossRefGoogle Scholar
  91. 91.
    Rybicki EP. A phylogenetic and evolutionary justification for three genera of Geminiviridae. Arch Virol. 1997;139:49–77.CrossRefGoogle Scholar
  92. 92.
    Saez C, Esteras C, Martinez C, Ferriol M, Dhillon NPS, Lopez C, et al. Resistance to tomato leaf curl New Delhi virus in melon is controlled by a major QTL located in chromosome 11. Plant Cell Rep. 2017; doi: 10.1007/s00299-017-2175.PubMedGoogle Scholar
  93. 93.
    Sahu PP, Sharma N, Puranik S, Chakraborty S, Prasad M. Tomato 26S Proteasome subunit RPT4a regulates ToLCNDV transcription and activates hypersensitive response in tomato. Sci Rep. 2016;6:270–8.CrossRefGoogle Scholar
  94. 94.
    Sahu PP, Sharma N, Puranik S, Muthamilarasan M, Prasad M. Involvement of host regulatory pathways during geminivirus infection: a novel platform for generating durable resistance. Funct Integr Genom. 2014;14:47–58.CrossRefGoogle Scholar
  95. 95.
    Sahu PP, Sharma N, Puranik S, Prasad M. Post-transcriptional and epigenetic arms of RNA silencing: a defense machinery of naturally tolerant tomato plant against Tomato Leaf Curl New Delhi Virus. Plant Mol Biol Rep. 2014;32:1015–29.CrossRefGoogle Scholar
  96. 96.
    Sahu PP, Rai NK, Chakraborty S, Singh M, Ramesh B, Chattopadhyay D, et al. Tomato cultivar tolerant to Tomato leaf curl New Delhi virus infection induces virus-specific short interfering RNA accumulation and defence-associated host gene expression. Mol Plant Pathol. 2010;11:531–44.PubMedCrossRefGoogle Scholar
  97. 97.
    Santos AA, Lopes KVG, Apfata JAC, Fontes EPB. NSP-interacting kinase, NIK: a transducer of plant defence signalling. J Exp Bot. 2010;61:3839–45.PubMedCrossRefGoogle Scholar
  98. 98.
    Selth LA, Dogra SC, Rasheed MS, Healy H, Randles JW, Rezaian MA. A NAC domain protein interacts with tomato leaf curl virus replication accessory protein and enhances viral replication. Plant Cell. 2005;17:311–25.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Sharma N, Sahu PP, Puranik S, Prasad M. Recent advances in plant-virus interaction with emphasis on small interfering RNAs (siRNAs). Mol Biotechnol. 2013;55:63–77.PubMedCrossRefGoogle Scholar
  100. 100.
    Sharma VK, Basu S, Chakraborty S. RNAi mediated broad spectrum transgenic resistance to chilli-infecting begomoviruses. Plant Cell Rep. 2015;34:1389–99.PubMedCrossRefGoogle Scholar
  101. 101.
    Shen Q, Hu T, Bao M, Cao L, Zhang H, Song F, et al. Tobacco RING E3 Ligase NtRFP1 mediates ubiquitination and proteasomal degradation of a Geminivirus-Encoded βC1. Mol Plant. 2016;9:911–25.PubMedCrossRefGoogle Scholar
  102. 102.
    Shivaprasad PV, Akbergenov R, Trinks D, Rajeswaran R, Veluthambi K, Hohn T, Pooggin MM. Promoters, transcripts, and regulatory proteins of Mungbean yellow mosaic geminivirus. J Virol. 2005;79:8149–63.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Singh A, Taneja J, Dasgupta I, Mukherjee SK. Development of plants resistant to tomato geminiviruses using artificial trans-acting small interfering RNA. Mol Plant Pathol. 2015;16:724–34.PubMedCrossRefGoogle Scholar
  104. 104.
    Singh RK, Rai N, Singh M, Saha S, Singh SN. Detection of tomato leaf curl virus resistance and inheritance in tomato (Solanum lycopersicum L.). J Agric Sci Camb. 2015;153:78–89.CrossRefGoogle Scholar
  105. 105.
    Sorab SS, Karim S, Varma A, Azhar EI, Mandal B, Abuzenadah AM, et al. Factors affecting sap transmission of Tomato leaf curl New Delhi begomovirus infecting sponge gourd in India. Phytoparasitica. 2013;41:591–2.CrossRefGoogle Scholar
  106. 106.
    Spassova MI, Prins TW, Folkertsma RT, Klein-Lankhorst RM, Hille J, Goldbach RW, et al. The tomato gene Sw5 is a member of the coiled coil, nucleotide binding, leucine-rich repeat class of plant resistance genes and confers resistance to TSWV in tobacco. Mol Breed. 2001;7:151–61.CrossRefGoogle Scholar
  107. 107.
    Szittya G, Burgyan J. RNA interference-mediated intrinsic antiviral immunity in plants. Curr Top Microbiol Immunol. 2013;371:153–81.PubMedGoogle Scholar
  108. 108.
    Takahashi H, Suzuki M, Natsuaki K, Shigyo T, Hino K, Teraoka T, et al. Mapping the virus and host genes involved in the resistance response in Cucumber mosaic virus infected Arabidopsis thaliana. Plant Cell Physiol. 2001;42:340–7.PubMedCrossRefGoogle Scholar
  109. 109.
    Teng K, Chen H, Lai J, Zhang Z, Fang Y, Xia R, et al. Involvement of C4 protein of beet severe curly top virus (Family Geminiviridae) in virus movement. PLoS ONE. 2010;5:e11280.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Tiwari AK, Sharma PK, Khan MS, Snehi SK, Raj SK, Rao GP. Molecular detection and identification of Tomato leaf curl New Delhi virus isolate causing yellow mosaic disease in bitter gourd (Momordica charantia), a medicinally important plant in India. Med Plants. 2010;2:117–23.Google Scholar
  111. 111.
    Tsuda K, Somssich IE. Transcriptional networks in plant immunity. New Phytol. 2015;206:932–47.PubMedCrossRefGoogle Scholar
  112. 112.
    Vallejos CE, Astua-Monge G, Jones V, Plyler TR, Sakiyama NS, Mackenzie SA. Genetic and molecular characterization of the I locus of Phaseolus vulgaris. Genetics. 2006;172:1229–42.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Verlaan MG, Hutton SF, Ibrahem RM, Kormelink R, Visser RGF, Scott JW, et al. The tomato yellow leaf curl virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-class RNA-dependent RNA polymerases. PLoS Genet. 2013;9:e1003399.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Vidal S, Cabrera H, Andersson RA, Fredriksson A, Valkonen JPT. Potato gene Y-1 is an N gene homolog that confers cell death upon infection with Potato virus Y. Mol Plant Microbe Interact. 2002;15:717–27.PubMedCrossRefGoogle Scholar
  115. 115.
    Vu TV, Choudhury NR, Mukherjee SK. Transgenic tomato plants expressing artificial microRNAs for silencing the pre-coat and coat proteins of a begomovirus, Tomato leaf curl New Delhi virus, show tolerance to virus infection. Virus Res. 2013;172:35–45.PubMedCrossRefGoogle Scholar
  116. 116.
    Wang B, Li F, Huang C, Yang X, Qian Y, Xie Y, et al. V2 of tomato yellow leaf curl virus can suppress methylation-mediated transcriptional gene silencing in plants. J Gen Virol. 2014;95:225–30.PubMedCrossRefGoogle Scholar
  117. 117.
    Wang H, Hao L, Shung CY, Sunter G, Bisaro DM. Adenosine kinase is inactivated by geminivirus AL2 and L2 proteins. Plant Cell. 2003;15:3020–32.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Wendte JM, Pikaard CS. The RNAs of RNA-directed DNA methylation. Biochem Biophys Acta. 2016;1860:140–8.PubMedCrossRefGoogle Scholar
  119. 119.
    Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, Corr C, Baker B. The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell. 1994;78:1101–15.PubMedCrossRefGoogle Scholar
  120. 120.
    Yadav RK, Chattopadhyay D. Enhanced viral intergenic region specific siRNA accumulation and DNA methylation correlates with resistance against a geminivirus. Mol Plant-Microbe Interact. 2011;24:1189–97.PubMedCrossRefGoogle Scholar
  121. 121.
    Yazdani-Khameneh S, Aboutorabi S, Shoori M, Aghazadeh A, Jahanshahi P, Golnaraghi A, et al. Natural occurrence of tomato leaf curl New Delhi virus in Iranian cucurbit crops. Plant Pathol J. 2016;32:201–8.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Yong CH, Lacatus G, Sunter G. Geminivirus AL2 protein induces expression of, and interacts with, a calmodulin-like gene, an endogenous regulator of gene silencing. Virology. 2014;460:108–18.CrossRefGoogle Scholar
  123. 123.
    Zaidi S, Martin DP, Amin I, Farooq M, Mansoor S. Tomato leaf curl New Delhi virus: a widespread bipartite begomovirus in the territory of monopartite begomoviruses. Mol Plant Pathol. 2016;18:901–11.PubMedCrossRefGoogle Scholar
  124. 124.
    ZhouY Rojas MR, Park MR, Seo YS, Lucas WJ, Gilbertson RL. Histone H3 interacts and colocalizes with the nuclear shuttle protein and the movement protein of a geminivirus. J Virol. 2011;85:11821–32.CrossRefGoogle Scholar
  125. 125.
    Zorzatto C, Machado JB, Lopes KVG, Nascimento KJT, Pereira WA, Brustolini OJB, et al. NIK1-mediated translation suppression functions as a plant antiviral immunity mechanism. Nature. 2015;520:679–82.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Zrachya A, Glick E, Levy Y, Arazi T, Citovsky V, Gafni Y. Suppressor of RNA silencing encoded by Tomato yellow leaf curl virus-Israel. Virology. 2007;358:159–65.PubMedCrossRefGoogle Scholar
  127. 127.
    Zvereva AS, Pooggin MM. Silencing and innate immunity in plant defense against viral and non-viral pathogens. Viruses. 2012;4:2578–97.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Archana Sharma Foundation of Calcutta 2017

Authors and Affiliations

  1. 1.National Institute of Plant Genome Research (NIPGR)New DelhiIndia

Personalised recommendations