The Nucleus

, Volume 60, Issue 3, pp 315–333 | Cite as

Dosage compensation and its roles in evolution of sex chromosomes and phenotypic dimorphism: lessons from Drosophila, C.elegans and mammals

  • R. N. Chatterjee
Review Article


In many sexually reproducing species, sex is determined by cytologically distinguishable ‘sex chromosomes’. The popular view is that the consequence of heteromorphic sex chromosomes is detrimental, and evolutionary emergence of dosage compensation mechanism is expected for two fold upregulation of X linked genes in order to restore the balance for the haplo-X in the sex against the diplo X of the other. Since, male and female share nearly identical genome in most animals, and since antagonistic selection operate for the expression divergence of the sex biased genes between sexes for mating type distinction, dosage compensation system is evolved in many species to link global transcription profile of the genome through histone variants and epigenetic modification of the genes for driving sex determination function. Whole genome transcriptome analyses and the investigations on the profiling of accessible chromatin components in male and female at different phase of development of Drosophila, C. elegans and mammal revealed that 50–60% X and autosomal genes of the genomes are expressed under sex specific selection through allelic bias (except some required dosage sensitive genes) expression, ranging from absent to complete compensation. The review focuses the recent development of dosage compensation research and illustrates its roles in sex chromosome evolution and sexual dimorphism in Drosophila, C. elegans and mammals.


Sexual dimorphism Sex chromosomes X chromosome Dosage compensation 



The work has been supported by UGC Emeritus Fellowship [Sanction No. F. 6-6/2015-17/EMERITUS-2015-17-GEN-5478(SA-II) dt.21.09.2015] to RNC.


  1. 1.
    Al Nadaf S, Waters PD, Konia E, Deakin JE, et al. Activity map of the tammar X chromosome shows that marsupial X inactivation is incomplete and escape is stochastic. Genome Biol. 2010;11:R122.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Alekseyenko AA, Demakova OV, Belyaeva ES, Makarevich GF, et al. Dosage compensation and intercalary heterochromatin in X chromosomes in Drosophila melanogaster. Chromosoma. 2002;111:106–13.PubMedCrossRefGoogle Scholar
  3. 3.
    Alekseyenko AA, Ho JWK, Peng S, Gelbart M, Tolstorukov MY, et al. Sequence-specific targeting of dosage compensation in Drosophila favors an active chromatin context. PLoS Genet. 2012;8:e1002646.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Arico JK, Katz DJ, Van der Vlag J, Kelly WG. Epigenetic patterns maintained in early Caenorhabditis elegans embryos can be established by gene activity in the parental germ cells. PLoS Genet. 2011;7(6):e1001391.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Assis R, Zhou Q, Bachtrog D. Sex-biased transcriptome evolution in Drosophila. Genome Biol Evol. 2012;4:1189–200.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Bachtrog D. Sex chromosome evolution: molecular aspects of Y degeneration in Drosophila. Genome Res. 2005;15:1393–401.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Bachtrog D. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat Rev Genet. 2013;14:113–24.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Bachtrog D, Charlesworth B. Reduced adaptation of a non-recombining neo-Y chromosome. Nature. 2002;416:323–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Bachtrog D, Hom E, Wong KM, Maside X, de Jong P. Genomic degradation of a young Y chromosome in Drosophila miranda. Genome Biol. 2008;9:R30.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Bachtrog D, Toda NRT, Lockton S. Dosage compensation and demasculinization of X chromosome in Drosophila. Curr Biol. 2010;20:1476–81.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Bachtrog D, Kirkpatrick M, Mank JE, McDaniel SF, et al. Are all sex chromosomes created equal? Trends Genet. 2011;27(9):350–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Baker BS, Gorman M, Marin I. Dosage compensation in Drosophila. Annu Rev Genet. 1994;28:491–521.PubMedCrossRefGoogle Scholar
  13. 13.
    Bardoni B, Zanaria E, Guioli S, Floridia G, et al. A dosage sensitive locus at chromosome Xp21 is involved in male-to-female sex reversal. Nat Genet. 1994;7:497–501.PubMedCrossRefGoogle Scholar
  14. 14.
    Barr ML, Bertram EG. A morphological distinction between neurones of the male and female, and the behaviour of the nucleolar satellite during accelerated nucleoprotein synthesis. Nature. 1949;163:675–7.CrossRefGoogle Scholar
  15. 15.
    Belote JM, Lucchesi JC. Control of X chromosome transcription by the maleless gene in Drosophila. Nature. 1980;285:573–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Blackman H, Ross L, Bachtrog D. Sex determination, sex chromosomes and karyotype evolution in insects. J Hered. 2016;108:1–6. Scholar
  17. 17.
    Bridges CB. Sex in relation to chromosomes. Am Nat. 1925;59:127–37.CrossRefGoogle Scholar
  18. 18.
    Brockdorff N, Turner BM. Dosage compensation in mammals. Cold Spring Harb Perspect Biol. 2015;7:a019406.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Brown EJ, Bachtrog D. The chromatin landscape of Drosophila: comparisons between species, sexes and chromosomes. Genome Res. 2014;24:1125–37.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Carvalho AB. Origin and evolution of the Drosophila Y chromosome. Cuur Opin Genet Dev. 2002;12:664–8.CrossRefGoogle Scholar
  21. 21.
    Carvalho AB, Koerich LB, Clark AG. Origin and evolution of Y chromosomes: Drosophila tales. Trends Genet. 2009;25:270–7.PubMedCentralCrossRefGoogle Scholar
  22. 22.
    Charlesworth B. Model for evolution of Y chromosome and dosage compensation. Proc Natl Acad Sci USA. 1978;75:5618–22.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Charlesworth B. The evolution of sex chromosomes. Science. 1991;251:1030–3.PubMedCrossRefGoogle Scholar
  24. 24.
    Charlesworth B. The evolution of chromosomal sex determination and dosage compensation. Curr Biol. 1996;6:149–62.PubMedCrossRefGoogle Scholar
  25. 25.
    Charlesworth D, Charlesworth B, Marais G. Steps in the evolution of heteromorphic sex chromosomes. Heredity. 2005;95:118–28.PubMedCrossRefGoogle Scholar
  26. 26.
    Chattejree SN, Mukherjee AS. Chromosomal basis of dosage compensation in Drosophila.V. Puffwise analysis of gene activity in the X-chromosome of male and female of D. hydei. Chromosoma. 1971;36:46–59.CrossRefGoogle Scholar
  27. 27.
    Chatterjee RN. X chromosomal organization and dosage compensation: in situ transcription of chromatin template activity of X chromosome hyperploids of Drosophila melanogaster. Chromosoma. 1985;91:259–66.PubMedCrossRefGoogle Scholar
  28. 28.
    Chatterjee RN. Mosaic pattern of X chromosomal transcriptions in a strain of Drosophila melanogaster with aneuploid X chromosome. Ind J Exp Biol. 1990;28:101–5.Google Scholar
  29. 29.
    Chatterjee RN. Binding affinity of leucine containing chromatin proteins to the polytene X chromosome of Drosophila and its significance. Ind J Exp Biol. 1991;29:301–4.Google Scholar
  30. 30.
    Chatterjee RN. Mechanisms of X chromosome regulation in Drosophila melanogaster. Nucleus. 1992;35:31–44.Google Scholar
  31. 31.
    Chatterjee RN. Mechanisms and evolutionary origins of gene dosage compensation. In: Chatterjee RN, Sanchez L, editors. Genome analysis in eukaryotes: developmental and evolutionary aspects. Narosa: Springer; 1998. p. 167–214.CrossRefGoogle Scholar
  32. 32.
    Chatterjee RN, Chatterjee P. Evolutionary origin of chromatin remodeling for dosage compensation: lessons from epigenetic modifications of X chromosomes in germ cells of Drosophila C. elegans and mammals. Nucleus. 2012;55:3–16.CrossRefGoogle Scholar
  33. 33.
    Chatterjee RN, Mukherjee AS. Chromosomal basis of dosage compensation in Drosophila. IX. Cellular autonomy of the faster replication of X chromosome in haplo X cells of Drosophila melanogaster and synchronous initiation. J Cell Biol. 1977;74:168–80.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Chatterjee RN, Mukherjee AS. Chromosomal basis of dosage compensation in Drosophila: assessment of hyperactivity of male X in situ. J Cell Sci. 1981;47:295–309.PubMedGoogle Scholar
  35. 35.
    Chatterjee RN. The evolution of sex determination pathway: reasoning from Drosophila. Presidential Lecture of Animal Science Section. Indian Science Congress Association. 2003; pp. 1–40.Google Scholar
  36. 36.
    Chatterjee RN, Derksen J, Van Der Ploeg M, Mukherjee AS. Role of nonhistone chromosomal protein in attainment of hyperactivity of the X chromosome of male Drosophila: a quantitative cytochemical study. Ind J Exp Biol. 1980;18:574–5.Google Scholar
  37. 37.
    Chatterjee RN, Dube DK, Mukherjee AS. In situ transcription analysis of chromatin template activity of the X chromosome of Drosophila following high molar NaCl treatment. Chromosoma. 1981;82:515–23.PubMedCrossRefGoogle Scholar
  38. 38.
    Chatterjee RN, Chatterjee R, Ghosh S. Heterochromatin-binding proteins regulate male X polytene chromosome morphology and dosage compensation: an evidence from a variegated rearranged strain [In (1)BM 2,(rv)] and its interactions with hyperploids and mle mutation in Drosophila melanogaster. Nucleus. 2016;59:141–54.CrossRefGoogle Scholar
  39. 39.
    Chaumeil J, Waters PD, Koina E, Gilbert C, Robinson TJ, et al. Evolution from XIST-independent to XIST-controlled X chromosome inactivation: epigenetic modifications in distantly related mammals. PLoS One. 2011;6(4):e19040.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Chen Zhang J. No X chromosome dosage compensation in human proteomes. Mol Biol Evol. 2015;32:1456–60.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Cline TW, Meyer BJ. Vive La difference: males vs females in flies vs worms. Annu Rev Genet. 1996;30:637–702.PubMedCrossRefGoogle Scholar
  42. 42.
    Conrad T, Akhtar A. Dosage compensation in Drosophila melanogaster: epigenetic fine-tuning of chromosome-wide transcription. Nature Rev Genet. 2012;13:123–34.PubMedCrossRefGoogle Scholar
  43. 43.
    Csankovszki G, Collette K, Spahl K, Carey J, Snyder M, Petty E, Patel U, TabuchiT Liu H, McLeod I, et al. Three distinct condensin complexes control C. elegans chromosome dynamics. Curr Biol. 2009;19:9–19.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Das M, Mutsuddi D, Duttagupta AK, Mukherjee AS. Segmental heterogenety in replication and transcription of X2 chromosome in Drosophila miranda and conservativeness in the evolution of dosage compensation. Chromosoma. 1982;87:373–88.CrossRefGoogle Scholar
  45. 45.
    Dawes HE, Berlin DS, Lapidus DM, Nusbaum C, Davis TL, Meyer BJ. Dosage compensation proteins targeted to X chromosomes by a determinant of hermaphrodite fate. Science. 1999;284:1800–4.PubMedCrossRefGoogle Scholar
  46. 46.
    Demakova OV, Kotlikova IV, Gordadze PR, Alekseyenko AA, et al. The MSL complex levels are critical for its correct targeting to the chromosomes in Drosophila melanogaster. Chromosoma. 2003;112:103–15.PubMedCrossRefGoogle Scholar
  47. 47.
    Deng X, Koya SK, Kong Y, Meller VH. Coordinated regulation of heterochromatic genes in Drosophila melanogaster. Genetics. 2009;182:481–91.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Deng X, Berletch JB, Ma W, et al. Mammalian X upregulation is associated with enhanced transcription initiation, RNA half-life, and MOF-mediated H4K16 acetylation. Dev Cell. 2013;25:55–68.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Deuring R, Fanti L, Armstrong JA, Sarte M, Papoulas O, et al. The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo. Mol Cell. 2000;5:355–65.PubMedCrossRefGoogle Scholar
  50. 50.
    DiBartolomeis SM, Tartof KD, Jackson FR. A superfamily of Drosophila satellite related (SR) DNA repeats restricted to the X chromosome euchromatin. Nucleic Acids Res. 1992;20:1113–6.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Dimitri P, Junakovic N, Arcà B. Colonization of heterochromatic genes by transposable elements in Drosophila. Mol Biol Evol. 2003;20:503–12.PubMedCrossRefGoogle Scholar
  52. 52.
    Disteche CM. Dosage Compensation of the Sex Chromosomes. Annu Rev Genet. 2012;46:537–60.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Ellegren H. Sex-chromosome evolution: recent progress and the influence of male and female heterogamety. Nature Rev Genet. 2011;12:157–66.PubMedCrossRefGoogle Scholar
  54. 54.
    Ellegren H, Parsch J. The evolution of sex biased genes and sex—biased gene expression. Nat Rev Genet. 2007;8:689–98.PubMedCrossRefGoogle Scholar
  55. 55.
    Ellison C, Bachtrog D. Non-allelic gene conversion enables rapid evolutionary changes at multiple regulatory sites encoded by transposable elements. eLIFE. 2015;4:e05899. doi: 10.7554/eLife.05899.PubMedCentralCrossRefGoogle Scholar
  56. 56.
    Fagegaltier D, König A, Lai A, Gordon EC, Gingeras TR, et al. A genome-wide survey of sexually dimorphic expression of Drosophila miRNAs identifies the steroid hormone-induced miRNA let-7 as a regulator of sexual identity. Genetics. 2014;198:647–68.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Gallach M, Betrán E. Dosage compensation and the distribution of sex-biased gene expression in Drosophila: considerations and genomic constraints. J Mol Evol. 2016;82:199–206.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Gelbart ME, Kuroda M. Drosophila dosage compensation: a complex voyage to the X chromosome. Development. 2009;136:1399–410.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Gibson JR, Chippindale AK, Rice WR. The X chromosome is a hot spot for sexually antagonistic fitness variation. Proc Roy Soc Lond B. 2002;269:499–505.CrossRefGoogle Scholar
  60. 60.
    Gladstein N, McKeon MN, Horabin JI. Requirement of male-specific dosage compensation in Drosophila females—implications of early X chromosome gene expression. PLoS Genet. 2010;6(7):e100104.CrossRefGoogle Scholar
  61. 61.
    Graves JAM. Avian sex, sex chromosomes, and dosage compensation in the age of genomics. Chromosome Res. 2014;22:45–57.PubMedCrossRefGoogle Scholar
  62. 62.
    Graves JAM. Evolution of vertebrate sex chromosomes and dosage compensation. Nature Rev Genet. 2016;17:33–46.PubMedCrossRefGoogle Scholar
  63. 63.
    Gu T, Elgin SC. Maternal depletion of Piwi, a component of the RNAi system, impacts heterochromatin formation in Drosophila. PLoS Genet. 2013;9:e1003780.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Gupta V, Parisi M, Sturgill D, Nuttall R, Doctolero M, et al. Global analysis of X-chromosome dosage compensation. J Biol. 2006;5:3.1–3.10.CrossRefGoogle Scholar
  65. 65.
    Hamada FN, Park PJ, Gordadze PR, Kuroda MI. Global regulation of X chromosomal genes by the MSL complex in Drosophila melanogaster. Genes Dev. 2005;19:2289–94.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Hense W, Baines JF, Parsch J. X chromosome inactivation during Drosophila spermatogenesis. PLoS Biol. 2007;5:e273.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Hodgkin J. Primary sex determination in the nematode C. elegans. Development. 1987;101(Suppl):5–15.PubMedGoogle Scholar
  68. 68.
    Huijser P, Hennig W, Dijkhof R. Poly (dC-dA/dG-dT) repeats in the Drosophila genome: a key function for dosage compensation and position effect? Chromosoma. 1987;95:209–15.CrossRefGoogle Scholar
  69. 69.
    Huylmans AK, Parsch J. Variation in the X: autosome distribution of male-biased genes among Drosophila melanogaster tissues and its relationship with dosage compensation. Genome Biol Evol. 2015;7:1960–71.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Huynh KD, Lee JT. Inheritance of a pre-inactivated paternal X chromosome in early mouse embryos. Nature. 2003;426:857–62.PubMedCrossRefGoogle Scholar
  71. 71.
    Joshi SS, Meller VH. Satellite repeats identify X chromatin for dosage compensation in Drosophila melanogaster males. Curr Biol. 2017;27:1–10.CrossRefGoogle Scholar
  72. 72.
    Khil PP, Smirnova NA, Romanienko PJ, Camerini-Otero RD. The mouse X chromosome is enriched for sex-biased genes not subject to selection by meiotic sex chromosome inactivation. Nat Genet. 2004;36:642–6.PubMedCrossRefGoogle Scholar
  73. 73.
    Kotlikova IV, Demakova OV, Semeshin VF, Shloma VV, Boldyreva LV, Kuroda MI, Zhimulev IF. The Drosophila dosage compensation complex binds to polytene chromosomes independently of developmental changes in transcription. Genetics. 2006;172:963–74.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Koya SK, Meller VH. Modulation of heterochromatin by male specific lethal proteins and roX RNA in Drosophila melanogaster males. PLoS One. 2015;10(10):e0140259.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Kuroda MI, Hilfiker A, Lucchesi JC. Dosage compensation in Drosophila—a model for coordinate regulation of transcription. Genetics. 2016;204:435–50.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Lakhotia SC, Mukherjee AS. Chromosomal basis of dosage compensation in Drosophila. I. Cellular autonomy of hyperactivity of male X-chromosome in salivary glands and sex differentiation. Genet Res. 1969;14:137–50.PubMedCrossRefGoogle Scholar
  77. 77.
    Lakhotia SC, Mukherjee AS. Chromosomal basis of dosage compensation in Drosophila. III. Early completion of replication by polytene the polytene X chromosome in male: further evidence and its implications. J Cell Biol. 1970;47:18–33.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Lakhotia SC, Mukherjee AS. Chromosomal basis of dosage compensation in Drosophila. IV, Hyperactivity of X-chromosome in male of D. bipectinata and D. kikkawai. Proc Zool Soc (Calcutta). 1972;25:1–9.Google Scholar
  79. 79.
    Lifschytz E, Lindsley DL. The role of X-chromosome inactivation during spermatogenesis. Proc Natl Acad Sci USA. 1972;69:182–6.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Lin MF, Carlson JW, Crosby MA, Matthews BB, et al. Revisiting the protein—coding gene catalog of Drosophila melanogaster using 12 fly genomes. Geneome Res. 2007;17:1823–36.CrossRefGoogle Scholar
  81. 81.
    Livernosis AM, Graves JAM, Waters PD. The origin and evolution of vertebrate sex chromosomes and dosage compensation. Heredity. 2012;108:50–8.CrossRefGoogle Scholar
  82. 82.
    Lott SE, Villalta JE, Schroth GP, Luo S, Tonkin LA, et al. Noncanonical compensation of zygotic X transcription in early Drosophila melanogaster development revealed through single-embryo RNA-Seq. PLoS Biol. 2011;9:e1000590.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Lucchesi JC. Gene dosage compensation and the evolution of sex chromosomes. Science. 1978;202:711–6.PubMedCrossRefGoogle Scholar
  84. 84.
    Lucchesi JC, Manning JE. Gene dosage compensation in Drosophila melanogaster. Adv Genet. 1987;24:371–429.PubMedGoogle Scholar
  85. 85.
    Lucchesi JC, Rawls RM Jr. Regulation of gene function: a comparison of X linked enzyme activity levels in normal and intersexual triploids of Drosophila melanogaster. Genetics. 1973;73:459–64.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Lucchesi JC, Rawls JM Jr, Maroni G. Gene dosage compensation in metafemales (3X; 2A) of Drosophila. Nature. 1974;248:564–7.PubMedCrossRefGoogle Scholar
  87. 87.
    Lucchesi JC, Belote JM, Maroni G. X-linked gene activity in metamales (XY; 3A) of Drosophila. Chromosoma. 1977;65:1–7.CrossRefGoogle Scholar
  88. 88.
    Lucchesi JC, Kelly WG, Panning B. Chromatin remodeling in dosage compensation. Annu Rev Genet. 2005;39:615–51.PubMedCrossRefGoogle Scholar
  89. 89.
    Lyon MF. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature. 1961;190:372–3.PubMedCrossRefGoogle Scholar
  90. 90.
    Lyon MF. X-chromosome inactivation. Curr Biol. 1998;9:R235–7.CrossRefGoogle Scholar
  91. 91.
    Maclaughlin DT, Donahoe PK. Mechanisms of disease sex determination and differentiation. N Engl J Med. 2004;350:4.CrossRefGoogle Scholar
  92. 92.
    Mank JE. The transcriptional architecture of phenotypic dimorphism. Nat Ecol Evol. 2017; 1.0006.
  93. 93.
    Mank JE, Hosken DJ, Wedell N. Some inconvenient truths about sex chromosome dosage compensation and the potential role of sexual conflict. Evolution. 2011;65:2133–44.PubMedCrossRefGoogle Scholar
  94. 94.
    Maroni G, Lucchesi JC. X chromosome transcription in Drosophila. Chromosoma. 1980;77:253–61.PubMedCrossRefGoogle Scholar
  95. 95.
    Maroni G, Plaut W. Dosage compensation in Drosophila melanogaster triploids. I. Autoradiographic study. Chromosoma. 1973;40:361–77.PubMedCrossRefGoogle Scholar
  96. 96.
    McQueen HA, McBride D, Miele G, Bird AP, et al. Dosage compensation in birds. Cell Curr Biol. 2001;11:253–7.PubMedGoogle Scholar
  97. 97.
    Meller VH, Rattner BP. The roX genes encode redundant male specific lethal transcripts required for targeting of the MSL complex. EMBO J. 2002;21:1084–91.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Menon DU, Meller VH. Imprinting of the Y chromosome influences dosage compensation in roX1 and roX2 Drosophila melanogtaster. Genetics. 2009;183:811–21.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Meyer BJ. Sex in the worm counting and compensating X-chromosome dose. Trends Genet. 2000;16:247–53.PubMedCrossRefGoogle Scholar
  100. 100.
    Moore KL, Barr ML. Morphology of the nerve cell nucleus in mammals, with special reference to the sex chromatin. J Comp Neurol. 1953;98:213–31.PubMedCrossRefGoogle Scholar
  101. 101.
    Mukherjee AS, Beermann W. Synthesis of ribonucleic acid by the X-chromosomes of Drosophila melanogaster and the problem of dosage compensation. Nature. 1965;207:785–6.PubMedCrossRefGoogle Scholar
  102. 102.
    Mukherjee J, Chatterjee RN. In situ transcription analysis of chromatin template activity of the X chromosome in meta males (XY; 3A) and intersexes (2X; 3A) of Drosophila melanogaster. Proc Zool Soc. 1992;45(Suppl A):265–75.Google Scholar
  103. 103.
    Muller HJ. Evidence of the precision of genetic adaptation. Harvey Lect Ser. 1950;43:165–229.Google Scholar
  104. 104.
    Muller HJ. Further studies on the nature and causes of gene mutations. In: Proceedings of the Sixth International Congress of Genetics, Ithaca, NY; 1932; 1: 213–55.Google Scholar
  105. 105.
    Nguyen DK, Disteche CM. Dosage compensation of the active X chromosome in mammals. Nat Genet. 2006;38:47–53.PubMedCrossRefGoogle Scholar
  106. 106.
    Nicoll M, Akerib CC, Meyer BJ. X-chromosome-counting mechanisms that determine nematode sex. Nature. 1997;388:200–4.PubMedCrossRefGoogle Scholar
  107. 107.
    Ohno S. Sex chromosomes and sex-linked genes. Berlin: Springer; 1967.CrossRefGoogle Scholar
  108. 108.
    Ohno S, Kaplan WD, Kinosita R. Formation of the sex chromatin by a single X-chromosome in liver cells of Rattus norvegicus. Exp Cell Res. 1959;18:415–8.PubMedCrossRefGoogle Scholar
  109. 109.
    Oliver B, Parisi M. Battle of the Xs. BioEssays. 2004;26:543–8.PubMedCrossRefGoogle Scholar
  110. 110.
    Palmer MJ, Mergner VA, Richman R, Manning JE, Kuroda MI, et al. The male-specific lethal-one (msl-1) gene of Drosophila melanogaster encodes a novel protein that associates with the X chromosome in males. Genetics. 1993;134:545–57.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Parisi M, Nuttall R, Naiman D, Bouffard G, Malley J, et al. Paucity of genes on the Drosophila X chromosome showing male biased expression. Science. 2003;299:697–700.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Payer B, Lee JT. X chromosome dosage compensation: how mammals keep the balance. Annu Rev Genet. 2008;42:733–72.PubMedCrossRefGoogle Scholar
  113. 113.
    Petty EL, Collette KS, Cohen AJ, Snyder MJ, Csankovszki G. Restricting dosage compensation complex binding to the X chromosomes by H2A.Z/HTZ-1. PLoS Genet. 2009;5:e1000699.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Philip P, Stenberg P. Male X linked genes in Drosophila melanogaster are compensated independently of male specific lethal complex. Epigenet Chromatin. 2013;6:35.CrossRefGoogle Scholar
  115. 115.
    Pimpinelli S, Berloco M, Fanti L, Dimitri P, Bonaccorsi S, Marchetti E, Caizzi R, Caggese C, Gatti M. Transposable elements are stable structural components of Drosophila melanogaster heterochromatin. Proc Natl Acad Sci USA. 1995;92:3804–8.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Pindyurin AV, Boldyreva LV, Shiome VV, Kolesnikova TD, et al. Interaction between the Drosophila heterochromatin proteins SUUR and HP1. J Cell Sci. 2008;121:1693–703.PubMedCrossRefGoogle Scholar
  117. 117.
    Ranz JM, Castillo-Davis CI, Meiklejohn CD, Hartl DL. Sex dependent gene expression and evolution of the Drosophila transcriptome. Science. 2003;300:1742–5.PubMedCrossRefGoogle Scholar
  118. 118.
    Rice W. Sex chromosomes and the evolution of sexual dimorphism. Evolution. 1984;2002:735–42.CrossRefGoogle Scholar
  119. 119.
    Rice WR. Sexually antagonistic genes-experimental evidence. Science. 1992;256:1436–9.PubMedCrossRefGoogle Scholar
  120. 120.
    Sala A, Toto M, Pinello L, et al. Genome-wide characterization of chromatin binding and nucleosome spacing activity of the nucleosome remodelling ATPase ISWI. EMBO J. 2011;30:1766–77.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Skripsky T, Lucchesi JC. Intersexuality resulting from interaction of sex specific lethal mutations in Drosophila melanogaster. Dev Biol. 1982;94:153–62.PubMedCrossRefGoogle Scholar
  122. 122.
    Smith PD, Lucchesi JC. The role of sexuality in dosage compensation in Drosophila. Genetics. 1968;61:607–18.Google Scholar
  123. 123.
    Spierer A, Seum C, Delattre M, Spierer P. Loss of the modifiers of variegation Su(var)3-7 or HP1 impacts male X polytene chromosome morphology and dosage compensation. J Cell Sci. 2005;118:5047–57.PubMedCrossRefGoogle Scholar
  124. 124.
    Steinemann M, Steinemann S, Lottspeich F. How Y chromosomes become genetically inert? Proc Natl Acad Sci USA. 1993;90:5737–41.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Steinmann-Zwicky M, Nothiger R. A small region on the X chromosome of Drosophila regulates a key gene that controls sex determination and dosage compensation. Cell. 1985;42:877–87.PubMedCrossRefGoogle Scholar
  126. 126.
    Stewart BR, Merriam JR. Dosage compensation. In: Ashburner M, Wright TRF, editors. The genetics and biology of Drosophila. 2nd ed. New York: Academic Press; 1980. p. 107–40.Google Scholar
  127. 127.
    Strome S, Kelly WG, Ercan S, Lieb JD. Regulation of the X chromosomes in Caenorhaditis elegans. Cold Spring Harbor Perspect Biol. 2014; 6.
  128. 128.
    Sturgill D, Zhang Y, Parisi M, Oliver B. Demasculinization of X chromosomes in the Drosophila genus. Nature. 2007;450:238–41.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Sulston JE, Schierenberg E, White JG, Thomson JN. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol. 1983;100:64.PubMedCrossRefGoogle Scholar
  130. 130.
    Swaminathan J, Baxter EL, Corces VG. The role of histone H2Av variant replacement and histone H4 acetylation in the establishment of Drosophila heterochromatin. Genes Dev. 2005;19:65–76.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Taipale M, Akhtar A. Chromatin mechanisms in Drosophila dosage compensation. Prog Mol Cell Biol. 2005;38:123–49.Google Scholar
  132. 132.
    Turner JMA. Meiotic sex chromosome inactivation. Development. 2007;134:1823–31.PubMedCrossRefGoogle Scholar
  133. 133.
    Vaqueriza JM, Torres-Padilla ME. Panoramic views of early epigenome. Nature. 2016;537:494–6.CrossRefGoogle Scholar
  134. 134.
    Vensko SP II, Stone EA. No evidence for a global male-specific lethal complex-mediated dosage compensation contribution to the demasculinization of the Drosophila melanogaster X chromosome. PLoS One. 2014;9:e103659.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Veyrunes F, Waters PD, Miethke P, et al. Bird like sex chromosomes of platypus imply recent origin of mammal sex chromosomes. Genome Res. 2008;18:965–73.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Vicoso B, Bachtrog D. Progress and prospects toward our understanding of the evolution of dosage compensation. Chromosome Res. 2009;17:585–602.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Vicoso B, Charlesworth B. The deficit of male-biased genes on the D. melanogaster X chromosome is expression-dependent: a consequence of dosage compensation? J Mol Evol. 2009;68:576–83.PubMedCrossRefGoogle Scholar
  138. 138.
    Wang PJ, McCarrey JR, Yang F, Page DC. An abundance of X linked genes expressed in spermatogonia. Nat Genet. 2001;27:422–6.PubMedCrossRefGoogle Scholar
  139. 139.
    Wang Q, Mank JE, Li J, Yang N, Qu L. Allele-specific expression analysis does not support sex chromosome inactivation on the chicken Z chromosome. Genome Biol Evol. 2017;9(3):619–26. Scholar
  140. 140.
    Waring GL, Pollack JC. Cloning and characterization of a dispersed, multicopy, X chromosome sequence in Drosophila melanogaster. Proc Natl Acad Sci USA. 1987;84:2843–7.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Waters PD, Wallis MC, Graves JAM. Mammalian sex—Origin and evolution of the Y chromosome and SRY. Semin Cell Dev Biol. 2007;18:389–400.PubMedCrossRefGoogle Scholar
  142. 142.
    Wright AE, Dean R, Zimmer F, Mank JE. How to make a sex chromosome? Nat Commun. 2016;7:12087.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Wu J, Huang B, Chen H, et al. The landscape of accessible chromatin in mammalian pre-implantation embryos. Nature. 2016;534:652–7.PubMedCrossRefGoogle Scholar
  144. 144.
    Wutz A. Gene silencing in X-chromosome inactivation: advances in understanding facultative heterochromatin formation. Nat Rev Genet. 2011;12:542–53.PubMedCrossRefGoogle Scholar
  145. 145.
    Zhang Y, Oliver B. An evolutionary consequence of dosage compensation on Drosophila melanogaster female X-chromatin structure? BMC Genom. 2010;11:6.CrossRefGoogle Scholar
  146. 146.
    Zhang W, Deng H, Bao X, Lerach S, Girton J, et al. The JIL-1 histone H3S10 kinase regulates dimethyl H3K9 modifications and heterochromatic spreading in Drosophila. Development. 2006;133:229–35.PubMedCrossRefGoogle Scholar
  147. 147.
    Zhang Y, Sturgill D, Parisi M, Kumar S, Oliver B. Constraint and turnover in sex-biased gene expression in the genus Drosophila. Nature. 2007;450:233–7.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Zhimulev IF, Belyaeva ES, Semeshin VF, Shloma VV, et al. Overexpression of SuUR gene induces reversible modifications at pericentric, telomeric and intercalary heterochromatin of Drosophila melanogaster polytene chromosomes. J Cell Sci. 2003;116:169–76.PubMedCrossRefGoogle Scholar
  149. 149.
    Zhou Q, Zhu H-M, Huang Q-F, Zho L, et al. Deciphering neo-sex and B chromosome evolution by the draft genome of Drosophila albomicans. BMC Genom. 2012;13:109.CrossRefGoogle Scholar
  150. 150.
    Zhou Q, Ellison CE, Kaiser VB, Alekseyenko AA, Gorchakov AA, et al. The epigenome of evolving Drosophila neo-sex chromosomes: dosage compensation and heterochromatin formation. PLoS Biol. 2013;11:e1001711.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Archana Sharma Foundation of Calcutta 2017

Authors and Affiliations

  1. 1.Genetics Research Unit, Department of ZoologyUniversity of CalcuttaKolkataIndia

Personalised recommendations