Advertisement

The Nucleus

, Volume 61, Issue 1, pp 61–67 | Cite as

Karyological analysis and NOR polymorphism of phayre’s langur, Trachypithecus phayrei crepuscula (Primate, Colobinae) in Thailand

  • Krit Pinthong
  • A. Tanomtong
  • S. Khunsook
  • I. Patawang
  • W. Wonkaonoi
  • P. Supanuam
Original Article

Abstract

Karyological analysis of Phayre’s langur (Trachypithecus phayrei crepuscula) at Songkhla Zoo, Thailand has been reported in this present article. Conventional staining, GTG-banding, and high-resolution technical analysis were carried out on standard whole blood T-lymphocyte culture from 4 specimens of T. phayrei crepuscula. The results showed that the diploid number is 2n = 44 and the fundamental number is 88 in both male and female. The autosomes consisted of 6 large metacentric, 10 large submetacentric, 2 large acrocentric, 6 medium metacentric, 14 medium submetacentric, 2 small submetacentric, and 2 small acrocentric chromosomes. The X chromosome is the large submetacentric chromosome, while the Y chromosome is medium metacentric chromosome. From GTG-banding and using high-resolution techniques, the numbers of bands and locations in T. phayrei crepuscula are 224 and 259, respectively, and each chromosome pair could be clearly differentiated. In addition, the long arm of subcentromeric chromosome pair 17 showed clearly observable nucleolar organizer regions/NORs. This is the first report on polymorphism of NORs in T. phayrei crepuscula. Thus the results indicated that a heteromorphic chromosome pair with different sizes of NORs is present for chromosome pair 17 (17a 17b) in both male and female animal. The results provide useful information for further cytogenetic study of this species. The karyotype formula could be deduced as: \(2n\left( {44} \right) \, = {\text{ L}}_{6}^{\text{m}} + {\text{L}}_{10}^{\text{sm}} + {\text{L}}_{2}^{\text{a}} + {\text{M}}_{6}^{\text{m}} + {\text{M}}_{14}^{\text{sm}} + {\text{S}}_{2}^{\text{sm}} + {\text{S}}_{2}^{\text{a}} + 2 \,\) Sex-chromosomes.

Keywords

Phayre’s langur Trachypithecus phayrei crepuscula Karyotype Chromosome 

Notes

Acknowledgements

The financial support from The Zoological Park Organization under the Royal Patronage of His Majesty the King is gratefully acknowledged. We are thankful to the Director of Songkhla Zoo for valuable help.

References

  1. 1.
    Bigoni F, Koehler U, Stanyon R, Ishida T, Wienberg J. Fluorescence in situ hybridization establishes homology between human and silvered leaf monkey chromosomes, reveals reciprocal translocations between chromosomes homologous to human Y/5, 1/9 and 6/16 and delineates an X1X2Y1Y2/X1X1X2X2 sex-chromosome system. Am J Phys Anthropol. 1997;23:315–27.CrossRefGoogle Scholar
  2. 2.
    Bigoni F, Stanyon R, Koehler U, Morescalchi A, Wienberg J. Mapping homology between human and black and white colobine monkey chromosomes by fluorescent in situ hybridization. Am J Primatol. 1997;42:289–98.CrossRefPubMedGoogle Scholar
  3. 3.
    Bigoni F, Stanyon R, Wimmer R, Schempp W. Chromosome painting shows that the proboscis monkey (Nasalis larvatus) has a derived karyotype and is phylogenetically nested within Asian Colobines. Am J Primatol. 2003;60:85–93.CrossRefPubMedGoogle Scholar
  4. 4.
    Buettner-Janusch J. Origin of man. 2nd ed. New York: Wiley; 1966.Google Scholar
  5. 5.
    Campiranon A. Cytogenetics. 2nd ed. Bangkok: Department of Genetics, Faculty of Science, Kasetsart University; 2003.Google Scholar
  6. 6.
    Chaiyasut K. Cytogenetics and Cytotaxonomy of the genus Zephyranthes. Bangkok: Department of Botany, Faculty of Science, Chulalongkorn University; 1989.Google Scholar
  7. 7.
    Chen Y, Luo L, Shan X, Cao X. Primates chromosome in China. Beijing: Science Publishing House; 1981.Google Scholar
  8. 8.
    Chiarelli B. Comparative morphometric analysis of primate chromosomes. III. The chromosome of the genera Hylobates, Colobus and Presbytis. Caryologia. 1963;16:637–48.CrossRefGoogle Scholar
  9. 9.
    Chiarelli B. Marked chromosome in Catarrhine monkeys. Folia Primatol. 1966;4:74–80.CrossRefPubMedGoogle Scholar
  10. 10.
    Chu EHY, Bender MA. Chromosome cytology and evolution in primates. Science. 1961;133:1399–405.CrossRefPubMedGoogle Scholar
  11. 11.
    Francis CM. A photographic guide to mammals of South-East Asia. New Holland: Ralph Curtis Publishing; 2001.Google Scholar
  12. 12.
    Groves CP. Primate taxonomy. Washington: Smithsonian Institute Press; 2001.Google Scholar
  13. 13.
    Groves CP. Subfamily Colobinae. In: Wilson DE, Reeder DM, editors. Mammal Species of the World. 3rd ed. Baltimore: Johns Hopkins University Press; 2005. p. 142.Google Scholar
  14. 14.
    Harding LE. Trachypithecus cristatus (Primates: Cercopithecidae). Mamm Species. 2010;42:149–65.CrossRefGoogle Scholar
  15. 15.
    Hsu TC, Benirschke K. Presbytis cristatus (silvered leaf-monkey) 2n = 44. In: Hsu TC, Benirschke K, editors. An atlas of mammalian chromosomes. New York: Springer; 1970 (Folio 199).CrossRefGoogle Scholar
  16. 16.
    Hsu TC, Benirschke K. Presbytis obscurus (dusky langur) 2n = 44. In: Hsu TC, Benirschke K, editors. An atlas of mammalian chromosomes. New York: Springer; 1971 (Folio 249).Google Scholar
  17. 17.
    Hsu TC, Benirschke K. Nasalis larvatus (proboscis monkey) 2n = 48. In: Hsu TC, Benirschke K, editors. An atlas of mammalian chromosomes. New York: Springer; 1975 (Folio 449).CrossRefGoogle Scholar
  18. 18.
    Hsu TC, Benirschke K. Pygatrix nemaeus (douc langur) 2n = 44. In: Hsu TC, Benirschke K, editors. An atlas of mammalian chromosomes. New York: Springer; 1975 (Folio 450).CrossRefGoogle Scholar
  19. 19.
    Khunsook S, Tanomtong A, Supanuam S. Cytogenetics of the white-handed gibbon, Hylobates lar by G-banding and high-resolution technique. Nucleus. 2008;51:11–9.Google Scholar
  20. 20.
    Nie W, Liu R, Chen Y, Wang J, Yang F. Mapping chromosomal homologies between humans and two langurs (Semnopithecus francoisi and S. phayrei) by chromosome painting. Chromosome Res. 1998;6:447–53.CrossRefPubMedGoogle Scholar
  21. 21.
    O’Brien SJ, Menninger JC, Nash WG. Atlas of mammalian chromosomes. New York: Wiley; 2006.CrossRefGoogle Scholar
  22. 22.
    Parr JWK. Large mammals of Thailand. Bangkok: Sarakadee Press; 2003.Google Scholar
  23. 23.
    Ponsa M, LE De Boer, Egozcue J. Banding pattern of the chromosomes of Presbytis cristatus pyrrhus and P. obscurus. Am J Primatol. 1983;4:165–9.CrossRefGoogle Scholar
  24. 24.
    Rooney DE. Human cytogenetics: constitutional analysis. Oxford: Oxford University Press; 2001.Google Scholar
  25. 25.
    Sangpakdee W, Tanomtong A, Monthatong M, Pinthong K, Gomontean B, Nie W. The homology and relationship of human (Homo sapiens) chromosomes 1, 19 and dusky langur (Trachypithacus obscurus) chromosomes 6, 8 demonstrated with chromosome painting. Cytologia. 2008;73:349–55.CrossRefGoogle Scholar
  26. 26.
    Stanyon R, Ciani AC, Sineo L, Morescalchi MA. The G-banded chromosomes of the proboscis monkey (Nasalis larvatus) compared with the macaque (Macaca mulatta). Antropolo Contem. 1992;15:101–4.Google Scholar
  27. 27.
    Supanuam P, Tanomtong A, Khunsook S, Sangpakdee W, Pinthong K, Sanoamuang L, Keawsri S. Localization of nucleolar organizer regions (NORs) of 4 gibbon species in Thailand by Ag–NOR banding technique. Cytologia. 2012;77:141–8.CrossRefGoogle Scholar
  28. 28.
    Tanomtong A, Supanuam P, Khunsook S, Bunjongrat R. Karyological of the white-handed gibbon, Hylobates lar (Primates, Hylobatidae) by conventional staining technique. KKU Res J. 2008;13:885–94.Google Scholar
  29. 29.
    Tanomtong A, Supanuam P, Khunsook S, Sumramdee C. Standardization of karyotype and idiogram of the agile gibbon, Hylobates agilis by G-banding and high-resolution technique. Nucleus. 2008;51:1–9.Google Scholar
  30. 30.
    Tanomtong A, Khunsook S, Supanuam P, Kaewsri S. A novel polymorphism of nucleolar organizer regions (NORs) and complex inversion chromosome 8 of white-handed gibbon (Hylobates lar, linnaeus, 1771) in Thailand. Cytologia. 2009;74:379–84.CrossRefGoogle Scholar
  31. 31.
    Tanomtong A, Khunsook S, Supanuam P, Kaewsri S, Srisamoot N. A discovery of polymorphism of nucleolar organizer regions (NORs) and whole-arm translocation (WAT) between chromosome 8 and 9 of lowland agile gibbon (Hylobates agilis unko) in Thailand. Cytologia. 2010;75:15–21.CrossRefGoogle Scholar
  32. 32.
    Tanomtong A, Khunsook S, Wonkaonoi W, Sangpakdee W, Bunjongrat R, Sanoamuang L. Karyological analysis and nature polymorphism of nucleolar organizer regions in the dusky leaf monkey, Trachypithecus obscures (Primates, Colobinae), by conventional staining, GTG-, CBG-banding, and high-resolution techniques. Cytologia. 2012;77:131–9.CrossRefGoogle Scholar
  33. 33.
    Tuinen PV, Mootnick AR, Kingswood SC, Hale DW, Kumamoto AT. Complex, compound inversion/translocation polymorphism in an ape: presumptive intermediate stage in karyotypic evolution to the agile gibbon, Hylobates agilis. Am J Phys Anthropol. 1999;110:129–42.CrossRefPubMedGoogle Scholar
  34. 34.
    Ushijima RN, Shininger FS, Grand T. Chromosome complements of two species of primates: Cynopithecus niger and Presbytis entrellus. Science. 1964;146:78.CrossRefPubMedGoogle Scholar
  35. 35.
    Warburton D, Handerson AS, Atwood KC. Localization of rDNA and Giemsa-banded chromosome complement of white-handed gibbon, Hylobates lar. Chromosoma. 1975;51:35–40.CrossRefPubMedGoogle Scholar
  36. 36.
    Yunis JJ, Prakash O. The origin of man: a chromosomal pictorial legacy. Science. 1982;215:1525–30.CrossRefPubMedGoogle Scholar

Copyright information

© Archana Sharma Foundation of Calcutta 2017

Authors and Affiliations

  • Krit Pinthong
    • 1
  • A. Tanomtong
    • 2
    • 3
  • S. Khunsook
    • 2
  • I. Patawang
    • 4
    • 5
  • W. Wonkaonoi
    • 6
  • P. Supanuam
    • 7
  1. 1.Program of Biology, Faculty of Science and TechnologySurindra Rajabhat UniversitySurinThailand
  2. 2.Department of Biology, Faculty of ScienceKhon Kaen UniversityMuangThailand
  3. 3.Toxic Substances in Livestock and Aquatic Animals Research GroupKhon Kaen UniversityMuangThailand
  4. 4.Department of Biology, Faculty of ScienceChiang Mai UniversityMuangThailand
  5. 5.Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Chiang Mai UniversityMuangThailand
  6. 6.Major of Biology, Faculty of Science and TechnologyMahasarakham Rajabhat UniversityMuangThailand
  7. 7.Program of Biology, Faculty of ScienceUbon Ratchathani Rajabhat UniversityUbon RatchathaniThailand

Personalised recommendations