Skip to main content

Advertisement

Log in

Surveying computational algorithms for identification of miRNA–mRNA regulatory modules

  • Review Article
  • Published:
The Nucleus Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

MicroRNAs (miRNAs) are small non-coding RNA that target gene expression at post-transcriptional level. To understand the molecular basis of miRNA regulation, it is essential to identify reliable miRNA target mRNAs and miRNA–mRNA functional networks. Several computational algorithms and tools are widely used for discovering miRNA–mRNA regulatory modules. We have comprehensively reviewed thirty-two tools and databases that were developed over the past decade. Our in-depth survey considers all significant features including underlying methodologies in each tool for basis of miRNA–mRNA functional module discovery. Current miRNA–mRNA functional module identification tools utilizes sequence based prediction, graph theory combined with Bayesian network, probabilistic and rule learning methods. Further we discuss ease of use, availability, and suitability of these methods, and provide an overview of recent computational algorithms used in miRNA–mRNA regulatory module identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bisognin A, Sales G, Coppe A, Bortoluzzi S, Romualdi C. MAGIA2: from miRNA and genes expression data integrative analysis to microRNA-transcription factor mixed regulatory circuits (2012 update). Nucleic Acids Res. 2012;40:1–9.

    Article  Google Scholar 

  2. Bryan K, Terrile M, Bray IM, Domingo-Fernandez R, Watters KM, Koster J, et al. Discovery and visualization of miRNA–mRNA functional modules within integrated data using bicluster analysis. Nucleic Acids Res. 2014;42:e17.

    Article  CAS  PubMed  Google Scholar 

  3. Engelmann JC, Spang R. A least angle regression model for the prediction of canonical and non-canonical miRNA–mRNA interactions. PLoS ONE. 2012;7:e40634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gennarino VA, Angelo GD, Dharmalingam G, Fernandez S, Russolillo G, Sanges R, et al. Identification of microRNA-regulated gene networks by expression analysis of target genes. Genome Res. 2012;22:1–10.

    Article  Google Scholar 

  5. Georgakilas G, Vlachos IS, Zagganas K, Vergoulis T, Paraskevopoulou MD, Kanellos I, et al. DIANA-miRGen v3.0: accurate characterization of microRNA promoters and their regulators. Nucleic Acids Res. 2015;44:D190–5.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hatem A, Kaya K, Parvin JD, Huang K, Çatalyürek ÜV. MICA: MicroRNA integration for active module discovery. 2014, pp. 136–45.

  7. Hecker N, Stephan C, Mollenkopf HJ, Jung K, Preissner R, Meyer HA. A new algorithm for integrated analysis of miRNA–mRNA interactions based on individual classification reveals insights into bladder cancer. PLoS ONE. 2013;8:e64543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hua Y, Duan S, Murmann AE, Larsen N, Kjems J, Lund AH, et al. MiRConnect: identifying effector genes of miRNAs and miRNA families in cancer cells. PLoS ONE. 2011;6:e26521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang GT, Athanassiou C, Benos PV. MirConnX: condition-specific mRNA-microRNA network integrator. Nucleic Acids Res. 2011;39:416–23.

    Article  Google Scholar 

  10. Huang JC, Babak T, Corson TW, Chua G, Khan S, Gallie BL, et al. Using expression profiling data to identify human microRNA targets. Nat Methods. 2007;4:1045–9.

    Article  CAS  PubMed  Google Scholar 

  11. Huang JC, Morris QD, Frey BJ. Bayesian inference of MicroRNA targets from sequence and expression data. J Comput Biol. 2007;14:550–63.

    Article  CAS  PubMed  Google Scholar 

  12. Joung JG, Fei Z. Identification of microRNA regulatory modules in Arabidopsis via a probabilistic graphical model. Bioinformatics. 2009;25:387–93.

    Article  CAS  PubMed  Google Scholar 

  13. Joung JG, Hwang KB, Nam JW, Kim SJ, Zhang BT. Discovery of microRNA-mRNA modules via population-based probabilistic learning. Bioinformatics. 2007;23:1141–7.

    Article  CAS  PubMed  Google Scholar 

  14. Jung D, Kim B, Freishtat RJ, Giri M, Hoffman E, Seo J. miRTarVis: an interactive visual analysis tool for microRNA-mRNA expression profile data. BMC Proc. 2015;9(Suppl 6):S2.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Krasnov GS, Dmitriev AA, Melnikova NV, Zaretsky AR, Nasedkina TV, Zasedatelev AS, et al. CrossHub: a tool for multi-way analysis of The Cancer Genome Atlas (TCGA) in the context of gene expression regulation mechanisms. Nucleic Acids Res. 2016;44:e62.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lavrač N, Kavšek B, Flach P, Todorovski L. Subgroup discovery with CN2-SD. J Mach Learn Res. 2004;5:153–88.

    Google Scholar 

  17. Le Béchec A, Portales-Casamar E, Vetter G, Moes M, Zindy PJ, Saumet A, et al. MIR@NT@N: a framework integrating transcription factors, microRNAs and their targets to identify sub-network motifs in a meta-regulation network model. BMC Bioinform. 2011;12:67.

    Article  Google Scholar 

  18. Liu B, Li J, Tsykin A, Liu L, Gaur AB, Goodall GJ. Exploring complex miRNA–mRNA interactions with Bayesian networks by splitting-averaging strategy. BMC Bioinform. 2009;10:408.

    Article  Google Scholar 

  19. Nam S, Li M, Choi K, Balch C, Kim S, Nephew KP. MicroRNA and mRNA integrated analysis (MMIA): a web tool for examining biological functions of microRNA expression. Nucleic Acids Res. 2009;37:1–7.

    Article  Google Scholar 

  20. Pio G, Ceci M, D’Elia D, Loglisci C, Malerba D. A novel biclustering algorithm for the discovery of meaningful biological correlations between microRNAs and their target genes. BMC Bioinform. 2013;14:S8.

    Article  Google Scholar 

  21. Pio G, Ceci M, Malerba D, D’Elia D. ComiRNet: a web-based system for the analysis of miRNA-gene regulatory networks. BMC Bioinform. 2015;16(Suppl 9):S7.

    Article  Google Scholar 

  22. Pio G, Malerba D, D’Elia D, Ceci M. Integrating microRNA target predictions for the discovery of gene regulatory networks: a semi-supervised ensemble learning approach. BMC Bioinform. 2014;15:S4.

    Article  Google Scholar 

  23. Preusse M, Marr C, Saunders S, Maticzka D, Lickert H, Backofen R, et al. SimiRa: a tool to identify coregulation between microRNAs and RNA-binding proteins. RNA Biol. 2015;12:998–1009.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Reshef DN, Reshef YA, Finucane HK, Grossman SR, McVean G, Turnbaugh PJ, et al. Detecting novel associations in large data sets. Science. 2011;334:1518–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sales G, Coppe A, Bisognin A, Biasiolo M, Bortoluzzi S, Romualdi C. MAGIA, a web-based tool for miRNA and genes integrated analysis. Nucleic Acids Res. 2010;38:W352–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stempor PA, Cauchi M, Wilson P. MMpred: functional miRNA–mRNA interaction analyses by miRNA expression prediction. BMC Genom. 2012;13:620.

    Article  CAS  Google Scholar 

  27. Su N, Qian M, Deng M. Integrative approaches for microRNA target prediction: combining sequence information and the paired mRNA and miRNA expression profiles. Curr Bioinform. 2013;8:37–45.

    CAS  Google Scholar 

  28. Tilton SC, Tal TL, Scroggins SM, Franzosa JA, Peterson ES, Tanguay RL, et al. Bioinformatics resource manager v2.3: an integrated software environment for systems biology with microRNA and cross-species analysis tools. BMC Bioinform. 2012;13:311.

    Article  Google Scholar 

  29. Tran DH, Satou K, Ho TB. Finding microRNA regulatory modules in human genome using rule induction. BMC Bioinform. 2008;9(Suppl 12):S5.

    Article  Google Scholar 

  30. Wu C, Bardes EE, Jegga AG, Aronow BJ. ToppMiR: ranking microRNAs and their mRNA targets based on biological functions and context. Nucleic Acids Res. 2014;42:107–13.

    Article  Google Scholar 

  31. Xiao Y, Ping Y, Fan H, Xu C, Guan J, Zhao H, et al. Identifying dysfunctional miRNA–mRNA regulatory modules by inverse activation, cofunction, and high interconnection of target genes: a case study of glioblastoma. Neuro Oncol. 2013;1(15):818–28.

    Article  Google Scholar 

  32. Xu H, Yu H, Tu K, Shi Q, Wei C, Li Y-Y, et al. cGRNB: a web server for building combinatorial gene regulatory networks through integrated engineering of seed-matching sequence information and gene expression datasets. BMC Syst Biol. 2013;7(Suppl 2):S7.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Xu J, Li CX, Li YS, Lv JY, Ma Y, Shao TT, et al. MiRNA-miRNA synergistic network: construction via co-regulating functional modules and disease miRNA topological features. Nucleic Acids Res. 2011;39:825–36.

    Article  CAS  PubMed  Google Scholar 

  34. Yan Z, Shah PK, Amin SB, Samur MK, Huang N, Wang X, et al. Integrative analysis of gene and miRNA expression profiles with transcription factor-miRNA feed-forward loops identifies regulators in human cancers. Nucleic Acids Res. 2012;40:1–13.

    Article  Google Scholar 

  35. Yoon S, De Micheli G. Prediction of regulatory modules comprising microRNAs and target genes. Bioinformatics. 2005;21:93–100.

    Article  Google Scholar 

  36. Zhang S, Li Q, Liu J, Zhou XJ. A novel computational framework for simultaneous integration of multiple types of genomic data to identify microrna-gene regulatory modules. Bioinformatics. 2011;27:401–9.

    Article  CAS  Google Scholar 

  37. Zhang W, Edwards A, Fan W, Flemington EK, Zhang K. miRNA–mRNA correlation-network modules in human prostate cancer and the differences between primary and metastatic tumor subtypes. PLoS ONE. 2012;7:1–12.

    CAS  Google Scholar 

  38. Zilberstein CB, Ziv-Ukelson M, Pinter RY, Yakhini Z. A high-throughput approach for associating MicroRNAs with their activity conditions. J Comput Biol. 2006;13:245–66.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by National Institute of Biomedical Genomics, Kalyani.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanka Pandey.

Additional information

This article is based on the presentation made during the 17th All India Congress of Cytology and Genetics and International Symposium on “Exploring Genomes: The New Frontier” held at CSIR-Indian Institute of Chemical biology Kolkata in collaboration with Archana Sharma Foundation of Calcutta during December 22–24 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, R., Pandey, P. Surveying computational algorithms for identification of miRNA–mRNA regulatory modules. Nucleus 60, 165–174 (2017). https://doi.org/10.1007/s13237-017-0208-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-017-0208-5

Keywords

Navigation