Skip to main content
Log in

Cytogenetic characterization of Agrobacterium rhizogenes transformed root lines of Rauvolfia serpentina

  • Original Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

Genetically transformed root cultures of Rauvolfia serpentina, have been developed following transformation with agropine strains of Agrobacterium rhizogenes. Characterization of Ri transformed root lines on the basis of morphology, karyotype analysis, T-DNA gene integration pattern and ajmalicine content in R. serpentina has been described in the present study. The transformed root lines were morphologically similar and exhibited typical hairy root phenotype. The somatic metaphase plates of the transformed root lines showed 2n = 22 chromosomes which is the diploid chromosome number of the species. The karyotype of both non-transformed and transformed roots showed 20 chromosomes with median to nearly median primary constriction and one pair of chromosomes had two constrictions, one at the median region and the other at the sub terminal region. Based on the pattern of TL and TR gene insertion the Ri transformed root lines can be divided into six types. Complete integration of TL-DNA was noted in 11 root lines induced with strain A. rhizogenes LBA 9402 belonging to Type I and II it is noteworthy that none of the root lines showed presence of aux1 and aux2, which are part of TR-DNA. Variable integration of TL-DNA was characteristic of several R. serpentina root lines. The Ri transformed root lines showed significant variability (p ≤ 0.05) in ajmalicine content (0.004 ± 0.001 to 0.229 ± 0.014 mg g−1 DW) after 4 weeks of culture on solid modified MS medium. Thus, we can conclude that the Ri transformed root lines of R. serpentina are morphologically and cytologically stable however variable pattern of TL and TR-DNA genes integration as well as ajmalicine content was noted among the different root lines. Thus, genetically variant transformed root lines of R. serpentina with high ajmalicine content can be selected for scale up studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Aird ELH, Hamill JD, Rhodes MJC. Cytogenetic analysis of hairy root cultures from a number of plant species transformed by Agrobacterium rhizogenes. Plant Cell Tissue Organ Cult. 1988;15:47–57.

    Article  Google Scholar 

  2. Alpizar E, Dechamp E, Lapeyre-Montes F, Guilhaumon C, Bertrand B, Jourdan C, et al. Agrobacterium rhizogenes-transformed roots of coffee (Coffea arabica): conditions for long-term proliferation and morphological and molecular characterization. Ann Bot. 2008;101:929–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Anonymous. The wealth of India: A dictionary of Indian raw materials and industrial products. New Delhi: CSIR; 2003.

  4. Baíza AM, Quiroz-Moreno A, Ruíz JA, Loyola-Vargas VM. Genetic stability of hairy root cultures of Datura stramonium. Plant Cell Tissue Organ Cult. 1999;59:9–17.

    Article  Google Scholar 

  5. Bandyopadhyay M, Jha S, Tepfer D. Changes in morphological phenotypes and withanolide composition of Ri-transformed roots of Withania somnifera. Plant Cell Rep. 2007;26:599–609.

    Article  CAS  PubMed  Google Scholar 

  6. Banerjee N, Sharma AK. Chromosome constitution and alkaloid content in Rauwolfia L. (Apocynaceae). Cytologia. 1989;54:723–8.

    Article  CAS  Google Scholar 

  7. Banerjee-Chattopadhyay S, Schwemmin AM, Schwemmin DJ. A study of karyotypes and their alterations in cultured and Agrobacterium transformed roots of Lycopersicon peruvianum Mill. Theor Appl Genet. 1985;71:258–62.

    CAS  PubMed  Google Scholar 

  8. Batra J, Dutta A, Singh D, Kumar S, Sen J. Growth and terpenoid indole alkaloid production in Catharanthus roseus hairy root clones in relation to left- and right termini-linked Ri T-DNA gene integration. Plant Cell Rep. 2004;23:148–54.

    Article  CAS  PubMed  Google Scholar 

  9. Benjamin BD, Roja G, Heble MR. Agrobacterium rhizogens mediated transformation of Rauvolfia serpentina: regeneration and alkaloid synthesis. Plant Cell Tissue Organ Cult. 1993;35:253–7.

    Article  CAS  Google Scholar 

  10. Benjamin BD, Roja G, Heble MR. Alkaloid synthesis by root cultures of Rauwolfia serpentina transformed by Agrobacterium rhizogenes. Phytochemistry. 1994;35:381–3.

    Article  CAS  Google Scholar 

  11. Blakesley D, Chaldecott MA. The role of endogenous auxin in root initiation Part II. Sensitivity and evidence from studies on transgenic plant tissues. Plant Growth Regul. 1993;13:77–84.

    Article  CAS  Google Scholar 

  12. Cardarelli M, Spano L, Mariotti D, Mauro ML, Van Sluys MA, Constantino P. Identification of the genetic locus responsible for non-polar root induction by Agrobacterium rhizogenes. Plant Mol Biol. 1985;5:385–91.

    Article  CAS  PubMed  Google Scholar 

  13. Chaudhuri KN, Ghosh B, Tepfer D, Jha S. Genetic transformation of Tylophora indica with Agrobacterium rhizogenes A4: growth and tylophorine productivity in different transformed root clones. Plant Cell Rep. 2005;24:25–35.

    Article  CAS  PubMed  Google Scholar 

  14. Dellaporta SL, Woods J, Hicks JB. A plant DNA minipreparation: version 2. Plant Mol Biol Rep. 1983;1:19–22.

    Article  CAS  Google Scholar 

  15. Ermayanti TM, McComb JA, O'Brien PA. Cytological analysis of seedling roots, transformed root cultures and roots regenerated from callus of Swainsona galegifolia (Andr.) R. Br. J Exp Bot. 1992;44:375–80.

    Article  Google Scholar 

  16. Ermayanti TM, Octavia Y, Hafizh EA. Cytological analysis of root cultures of Artemissia cina. Ann Bogoriensesns. 2004;9:50–8.

    Google Scholar 

  17. Gamborg OL, Miller RA, Ojima K. Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res. 1968;50:151–8.

    Article  CAS  PubMed  Google Scholar 

  18. Georgiev MI, Pavlov AI, Bley T. Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biotechnol. 2007;74:1175–85.

    Article  CAS  PubMed  Google Scholar 

  19. Hänisch ten Cate CH H, Loonen AE, Ottaviani MP, Ennik L, van Eldik G, Stiekema WJ. Frequent spontaneous deletions of Ri T-DNA in Agrobacterium rhizogenes transformed potato roots and regenerated plants. Plant Mol Biol. 1990;14:735–41.

  20. Hooykass PJJ, Klapwjik PM, Nuti MP, Schilperoort RA, Rorsch A. Transfer of the A. tumefaciens Ti plasmid to avirulent Agrobacteria and Rhizobium ex planta. J Gen Microbiol. 1977;98:477–84.

    Article  Google Scholar 

  21. Levan A, Sandberg A, Fredga K. Nomenclature for centromeric position on chromosomes. Hereditas. 1964;52:201–20.

    Article  Google Scholar 

  22. Mano Y, Nabeshima S, Matsui C, Ohkawa H. Production of tropane alkaloids by hairy root cultures of Scopolia japonica. Agric Biol Chem. 1986;50:2715–22.

    Article  CAS  Google Scholar 

  23. Mehrotra S, Goel MK, Rahman LU, Kukreja AK. Molecular and chemical characterization of plants regenerated from Ri-mediated hairy root cultures of Rauwolfia serpentina. Plant Cell Tissue Organ Cult. 2013;114:31–8.

    Article  CAS  Google Scholar 

  24. Moyano E, Fornalé S, Palazòn J, Cusidò RM, Bonfill M, Piñol MC. Effect of Agrobacterium rhizogenes T-DNA on alkaloid production of Solanaceae plants. Phytochem. 1999;52:1287–92.

    Article  CAS  Google Scholar 

  25. Mukherjee S, Das S, Jha S. Chromosomal stability in transformed hairy root cultures of Artemissia annua L. Cell Chromos Res. 1994;17:71–6.

    Google Scholar 

  26. Murashige T, Skoog F. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant. 1962;15:473–97.

    Article  CAS  Google Scholar 

  27. Nilsson O, Olsson O. Getting to the root: the role of the Agrobacterium rhizogenes rol genes in the formation of hairy roots. Physiol Plant. 1997;100:463–73.

    Article  CAS  Google Scholar 

  28. Panwar GS, Attitalla IH, Guru SK. An efficient in vitro clonal propagation and estimation of reserpine content in different plant parts of Rauwolfia serpentina L. Am-Eurasian J Sci Res. 2011;6:217–22.

    CAS  Google Scholar 

  29. Payne J, Hamill JD, Robins RJ, Rhodes MJC. Production of hyoscyamine by hairy root cultures of Datura stramonium. Planta Med. 1987;53:474–8.

    Article  CAS  PubMed  Google Scholar 

  30. Ramsay G, Kumar A. Transformation of Vicia faba cotyledon and stem tissues by Agrobacterium rhizogenes: infectivity and cytological studies. J Exp Bot. 1990;41:841–7.

    Article  Google Scholar 

  31. Roychowdhury D, Ghosh B, Chaubey B, Jha S. Genetic and morphological stability of six-year-old transgenic Tylophora indica plants. Nucleus. 2013;56:81–9.

    Article  Google Scholar 

  32. Roychowdhury D, Majumder A, Jha S. Agrobacterium rhizogenes mediated transformation in medicinal plants: prospects and challenges. In: Chandra S, Verma A (eds). Biotechnology for medicinal plants. Springer,2013;29-68.

  33. Sokal RR, Rohlf FJ. Introduction to biostatistics. New York: WH Freeman; 1987.

    Google Scholar 

  34. Spena A, Schmülling T, Koncz C, Schell J. Independent and synergistic activity of RolA, B and C loci in stimulating abnormal growth in plants. Embo J. 1987;6:3891–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Stebbins GL. Chromosomal evolution in higher plants. London: Edward Arnold Publ Ltd; 1971. p. 49–113.

    Google Scholar 

  36. Taneja J, Jaggi M, Wankhede DP, Sinha AK. Effect of loss of T-DNA genes on MIA biosynthetic pathway gene regulation and alkaloid accumulation in Catharanthus roseus hairy roots. Plant Cell Rep. 2010;29:1119–29.

    Article  CAS  PubMed  Google Scholar 

  37. Villaine F, Casse-Delbart F. Independant induction of transformed roots by the TL and TR regions of the Ri plasmid of agropine type Agrobacterium rhizogenes. Mol Gen Genet. 1987;206:17–23.

    Article  Google Scholar 

  38. Virmani OP, Popli SP, Misra LN, Gupta MM, Srivastava GN, Abraham Z, Singh AK. Dictionary of Indian Medicinal Plants. CIMAP, Lucknow: India;1992:387.

  39. Vries-Uijtewaal ED, Gilissen LJW, Flipse E, Sree Ramulu K, De Groot B. Characterization of root clones obtained after transformation of monohaploid and diploid potato genotypes with hairy root inducing strains of Agrobacterium. Plant Sci. 1988;58:193–202.

  40. Webb KJ, Jones S, Robbins MP, Minchin FR. Characterization of transgenic root cultures of Trifolium repens, Trifolium pratense and transgenic plants of Lotus corniculatus. Plant Sci. 1990;70:243–54.

  41. White FF, Taylor BH, Huffman GA, Gordon MP, Nester EW. Molecular and genetic analysis of the transferred DNA regions of the root inducing plasmid of Agrobacterium rhizogenes. J Bacteriol. 1985;164:33–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Xu Z-Q, Jia J-F. The reduction of chromosome number and the loss of generation ability during subculture of hairy root cultures of Onobrychis viciaefolia transformed by Agrobacterium rhizogenes. Plant Sci. 1996;120:107–12.

    Article  CAS  Google Scholar 

  43. Zarco CR. A new method for estimating karyotype asymmetry. Taxon. 1986;35:526–30.

    Article  Google Scholar 

Download references

Acknowledgments

Smita Ray thanks University Grants Commission, for the award of the Minor Research Project No. F. PSW-117/12–13 (ERO) S. No. 214374 and Head, Department of Botany, Calcutta University for facilities provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumita Jha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, S., Samanta, T., Majumder, A. et al. Cytogenetic characterization of Agrobacterium rhizogenes transformed root lines of Rauvolfia serpentina . Nucleus 57, 105–112 (2014). https://doi.org/10.1007/s13237-014-0112-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-014-0112-1