Skip to main content
Log in

Determination of nature of polyploidy in Argemone ochroleuca ssp. ochroleuca Sweet

  • Original Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

Cytogenetical and molecular studies in Argemone mexicana Lin. (2n = 28) and A.ochroleuca ssp. ochroleuca Sweet. (2n = 56) showed exclusive bivalent pairing at meiois; their triploid hybrid had, univalents, bivalents and trivalents; autotetraploid of diploid A. mexicana had bivalents and quadrivalents and polyhaploid of A. ochroleuca showed bivalency. Random amplified polymorphic DNA analyses did not support the autotetraploid nature of A. ochroleuca. The dendrogram based on pair-wise genetic similarity coefficients showed distinct grouping of two species into two clusters. The conflicting data are resolved by deducing that sufficient similarities existed between one of the ochroleuca and the diploid species genome; the remainder of the ochroleuca genome had homologous chromosomes. Apparently, A. ochroleuca carried enough cryptic intergenomic homologies which ordinarily remained unexposed. In ochroleuca ‘hemizygous-ineffective’ mechanism is suggested. Further a diploidizing genetic mechanism is envisaged. Alternatively an acute propensity to preferential pairing caused bivalent formation. Such a system or systems caused meiotic isolation of various genomes and instituted normal fertility. Thus repression of genetic control is of evolutionary significance in the creation of reproductive isolation and sterility barriers for further speciation. The segmental allotetraploid nature of A. ochroleuca is inferred.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bouvet JM, Fontaine C, Sanou H, Cardi C. An analysis of the pattern of genetic variation in Vitellaria paradoxa using RAPD markets. Agroforest Syst. 2004;60:61–9.

    Article  Google Scholar 

  2. Chaturvedi M, Datta K, Pal M. Pollen anomaly - a clue to natural hybridity in Argemone (Papaveraceae). Grana. 1999;38:339–42.

    Article  Google Scholar 

  3. Doyle JJ, Doyle JL. Isolation of plant DNA from fresh tissue. Focus. 1990;12:13–5.

    Google Scholar 

  4. Fu C, Qiu Y, Kong H. RAPD analysis for genetic diversity in Chagium smyrnioides (Apiaceae) an endangered plant. Bot Bull Acad Sin. 2003;44:13–8.

    CAS  Google Scholar 

  5. Gustine DL, Huff DR. Genetic variation within and among white clover populations from managed permanent pastures of the northeastern US. Crop Sci. 1999;39:524–30.

    Article  Google Scholar 

  6. Jauhar PP. Genetic regulation of diploid-like chromosome pairing in the hexaploid species, Festuca arundinacea Schreb. and F. rubra L. (Gramineae). Chromosoma. 1975;52:363–82.

    Article  Google Scholar 

  7. Jauhar PP. Genetic control of chromosome behavior Implications in evolution, crop improvement, and human biology. Nucleus. 2010;53:3–12.

    Article  Google Scholar 

  8. Jayram K, Prasad MNV. Genetic diversity in Oroxylum indicum (L) Vent (Bignoniaceae) a vulnerable medicinal plant by random amplified polymorphic DNA marker. Afr J Biotechnol. 2008;7:254–62.

    Google Scholar 

  9. Kshetrapal S, Jain U, Tanwar TC. Anatomical study in the genus Argemone. Bulletin Bot Survey India. 1984;26:164–6.

    Google Scholar 

  10. Machua J, Muturi G, Gicheru J. Genetic diversity within Brachylaena Huillensis (O Hoffim) populations in Kenya implications for conservation of a wood Carving tree. J Discov Innov. 2004;19:32–6.

    Google Scholar 

  11. Malhotra SK. Natural hybrid between A. mexicana and A. ochroleuca. Cur Sci. 1960;29:282.

    Google Scholar 

  12. Malik CP, Grover IS. Argemone subfusiformis Ownbey (Papaveraceae) – a new record for India. Indian Forester. 1969;95:480–1.

    Google Scholar 

  13. Malik CP, Grover IS. The Genus Argemone II Cytogenetic Relationships of A ochroleuca ssp ochroleuca (2n = 56) and some diploid (2n = 28) Argemone Species. Theor Appl Genet. 1973;43:329–34.

    Article  Google Scholar 

  14. Malik CP, Thomas PT. Chromosomal polymorphism in Festuca arundinacea. Chromosoma. 1966;18:1–10.

    Article  Google Scholar 

  15. McDonald A. Plantae alpinae novae Mexicanae Ae subalpina (Papaveraceae). Bittonia. 1991;43:120–2.

    Article  Google Scholar 

  16. Ownbey GB. Monograph of the genus Argemone for North America and the West Indies. Mem Torrey Bot Club. 1958;21:1–159.

    Google Scholar 

  17. Ownbey GB. The genus Argemone in South America and Hawaii. Brittionia. 1961;13:91–109.

    Article  Google Scholar 

  18. Schwarzbach AE, Kadereit JW. Phylogeny of prickly poppies Argemone (papaveraceae) and the evolution of morphological and alkaloid characters based on ITS nrDNA sequence variation. Plant Syst Evol. 1999;218:257–79.

    Article  CAS  Google Scholar 

  19. Sneath PHA, Sokal RR. The principles and practices of numerical classification Numerical taxonomy (Freeman Pbl. San Francisco) USA 1973.

  20. Venktesh CS. Argemone ochroleuca ssp. ochroleuca A new record for India. Curr Sci. 1962;31:250–1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. P. Malik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karnawat, M., Malik, C.P. Determination of nature of polyploidy in Argemone ochroleuca ssp. ochroleuca Sweet. Nucleus 54, 153–158 (2011). https://doi.org/10.1007/s13237-011-0045-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-011-0045-x

Keywords

Navigation