Skip to main content
Log in

Karyomorphometrical analysis of Spilanthes Jacq. (Asteraceae) using image analysis system

  • Original Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

This study was aimed to bring out the Karyotype characteristics of four species of Spilanthes to check for marked symmetry or asymmetry in the chromosomal complements with the aid of semi-automatic image analysis system. The chromosome number of Spilanthes calva and S. radicans was 2n = 78, and in S. ciliata and S. uliginosa it was 2n = 52. The four investigated taxa of Spilanthes are monobasic with the secondary number X 2 = 13. The size of chromosome ranged from 0.50–1.62 μm. The chromosome pairs with secondary constriction are varying from one to three in various taxa. The karyotypes show that considerable variation exists in chromosome morphology and structure among the species studied. In Spilanthes the lesser values for all the parameters of karyomorphology show its rather evolved nature. Such type of variation is important from the evolutionary view point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chung K, Kono Y, Wang CM, Peng CI. Notes on Acmella (Asteraceae: Heliantheae) in Taiwan. Bot Studies. 2008;49:73–82.

    Google Scholar 

  2. Fernandes A, Leitao MT. Contribution a l’etude cytotaxonomique Spermatophyta du Portugal XVII-Lamiaceae. Mem Soc Broteriana. 1984;27:27–75.

    Google Scholar 

  3. Fukui K. Analysis and utility of chromosome information by using chromosome image analyzing system, CHIAS. Bull Natl Inst Agrobiol Resour. 1988;4:153–76.

    Google Scholar 

  4. Fukui K, Kakeda K. Quantitative karyotyping of barley chromosomes by image analysis methods. Genome. 1990;33:450–8.

    Article  Google Scholar 

  5. Fukui K, Kamisugi Y. Mapping of C-banded Crepis chromosomes by imaging methods. Chromosome Res. 1995;3:79–86.

    Article  PubMed  CAS  Google Scholar 

  6. Fukui K, Mukai Y. Condensation pattern as a new image parameter for identification small chromosomes in plants. Jpn J Genet. 1988;63:359–66.

    Article  Google Scholar 

  7. Gottschalk W. Polyploidy and its role in the evolution of higher plants. In: Sharma AK, Sharma A, editor. Advances in chromosome and cell genetics. Oxford: Printsman Press and London: IBH Publ. Co.; 1985.

  8. Grant V. Periodicities in the chromosome numbers of the angiosperms. Bot Gaz. 1982;143:379–89.

    Article  Google Scholar 

  9. Grant V. Plant speciation, 2nd edn. Columbia University Press; 1981. p. 564.

  10. Hind N, Biggs N. Plate 460. Acmella oleracea compositae. Bot Mag. 2003;20:31–9.

    Google Scholar 

  11. Huziwara Y. The karyotype analysis in some genera of Compositae X. The chromosomes of some European species of Aster. Bot Mag. 1962;75:143–50.

    Google Scholar 

  12. Iijima K, Kakeda K, Fukui K. Identification and characterization of somatic rice chromosomes by imaging methods. Theor Appl Genet. 1991;81:591–605.

    Article  Google Scholar 

  13. Jansen RK. Systematic significance of chromosome numbers in Acmella (Asteraceae). Amer J Bot. 1985;72:1835–41.

    Article  Google Scholar 

  14. Jansen RK. The systematics of Acmella (Asteraceae-Heliantheae). Syst Bot Monograph. 1985;8:1–115.

    Article  Google Scholar 

  15. King RM, Robinson H. The Genera of the Eupatorieae (Asteraceae). Monogr Syst Bot Missouri Bot Gard. 1987;22:1–581.

    Google Scholar 

  16. Koopman W, Jong J, De Jong J. A numerical analysis of karyotypes and DNA amounts in Lettuce cultivars and species (Lactuca subsect. Lactuca, Compositae). Acta Bot Neerlandica. 1996;45:211–22.

    Google Scholar 

  17. Krikorian AD, O’connor SA, Fitter MS. Chromosome number variation and Karyotypic stability in cultures and culture derived plants. In: Evans DA, Sharp W R, Ammirato PV, Yamada Y, editors. Hand book of plant cell culture; 1983. p. 541–73.

  18. Lavania UC, Srivastava S. A simple parameter of dispersion index that serves as an adjunct to karyotype asymmetry. J Biosci. 1992;17:179–82.

    Article  Google Scholar 

  19. Levan AK, Fredga K, Sandberg A. Nomenclature for centromeric position on chromosomes. Heriditas. 1964;52:201–20.

    Article  Google Scholar 

  20. Mohanty BD, Ghosh PD, Maity S. Chromosomal analysis in cultured cells of barley (Hordeum Vulgare L.): structural alterations in chromosomes. Cytologia. 1991;56:191–7.

    Article  Google Scholar 

  21. Ojeda MS, Torres LFE. Karyotype analysis of Sporobolus indicus (L.) R. Br. (Ergrostoideae: Gramineae) by image analysis system. Cytologia. 1996;61:301–6.

    Article  Google Scholar 

  22. Rajalakshmi R. Cytological and phytochemical investigations of some medicinal plants of Asteraceae. PhD thesis; 2001

  23. Rajalakshmi R, Joseph J. Karyomorphometrical analysis and Chemical polymorphism in Tagetes erecta and T. patula. Philippine J Sci. 2004;133:135–44.

    Google Scholar 

  24. Sharma AK, Sharma A. Chromosome techniques—theory and practice. 3rd ed. London: Butterworths; 1980.

    Google Scholar 

  25. Watanabe K, Ito M, Yahara T, Sullivan VI, Kawahara T, Crawford DJ. Numerical analyses of Karyotypic diversity in the genes Eupatorium (Composite, Eupatorieae). Plant Syst Evol. 1990;170:215–28.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radhakrishnan Rajalakshmi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajalakshmi, R., Jose, J. Karyomorphometrical analysis of Spilanthes Jacq. (Asteraceae) using image analysis system. Nucleus 54, 159–168 (2011). https://doi.org/10.1007/s13237-011-0041-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-011-0041-1

Keywords

Navigation