Skip to main content
Log in

Modified protocol for obtaining isolated and high-resolution pachytene chromosomes

The Nucleus Aims and scope Submit manuscript

Abstract

The expansion of molecular cytogenetics has called for the evaluation of pachytene chromosomes as targets for in situ hybridization (ISH) and micro-dissection. These techniques represent powerful tools for chromosome identification, karyotype comparison, physical mapping and phylogenetic analyses. Because cytogenetic preparations showing well-individualized and cytoplasm-free chromosomes are pre-requisites for ISH and micro-dissection, this work was performed with the aim of developing an improved methodology to obtain individualized pachytene chromosomes of maize (Zea mays L.). The used protocol, based on two steps of enzymatic treatment for establishment of cell suspension, released the pollen mother cells (PMCs) from maize anthers. All slides, prepared from maize PMC suspensions, showed pachytene cells with at least one individualized bivalent. This result was considered a major methodological advance, since it facilitated the scattering of all bivalents. These chromosomes were digitally straightened and four morphological parameters were established to characterize all ten maize bivalents. Considering the conditions of an excellent pachytene cytogenetic preparation for ISH and micro-dissection, the results showed that the applied methodology provided adequate pachytene chromosomes for distinct purposes and can be adapted for other plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  1. Ananiev EV, Phillips RL, Rines HW. Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci USA. 1998;95:13073–8.

    Article  PubMed  CAS  Google Scholar 

  2. Andras SC, Hartman TPV, Marshall JA, Marchant R, Power JB, Cocking EC, et al. A drop-spreading technique to produce cytoplasm-free mitotic preparations from plants with small chromosomes. Chromosome Res. 1999;7:641–7.

    Article  PubMed  CAS  Google Scholar 

  3. Armstrong SJ, Fransz P, Marshall DF, Jones GH. Physical mapping of DNA repetitive sequences to mitotic and meiotic chromosomes of Brassica oleracea var. alboglabra by fluorescence in situ hybridization. Heredity. 1998;81:666–73.

    Article  CAS  Google Scholar 

  4. Barrett SD, Carvalho CR. A software tool to straighten curved chromosome images. Chromosome Res. 2003;11:83–8.

    Article  PubMed  CAS  Google Scholar 

  5. Caixeta ET, Carvalho CR. Chromomeric pattern of maize pachytene chromosomes after trypsin treatment. Hereditas. 2000;133:183–7.

    Article  PubMed  CAS  Google Scholar 

  6. Caixeta ET, Carvalho CR. An improved cytogenetic method for maize pachytene chromosomes. Cytologia. 2001;66:173–6.

    Google Scholar 

  7. Caixeta ET, Carvalho CR. Chromomere mapping in maize pachytenes. Caryologia. 2003;56:53–6.

    Google Scholar 

  8. Chen CC, Chen CM, Hsu FC, Wang CJ, Yang JT, Kao YY. The pachytene chromosomes of maize as revealed by fluorescence in situ hybridization with repetitive DNA sequences. Theor Appl Genet. 2000;101:30–6.

    Article  CAS  Google Scholar 

  9. Chen CC, Chen CM, Yang JT, Kao YY. Localization of a repetitive DNA sequence to the primary constrictions of maize pachytene chromosomes. Chromosome Res. 1998;6:236–8.

    PubMed  CAS  Google Scholar 

  10. Danilova TV, Birchler JA. Integrated cytogenetic map of mitotic metaphase chromosome 9 of maize: resolution, sensitivity, and banding paint development. Chromosoma. 2008;117:345–56.

    Article  PubMed  Google Scholar 

  11. Dong F, Song J, Naess SK, Helgeson JP, Gebhardt C, Jiang J. Development and applications of a set of chromosome-specific cytogenetic DNA markers in potato. Theor Appl Genet. 2000;101:1001–7.

    Article  CAS  Google Scholar 

  12. Jong JH, Fransz P, Zable P. High resolution FISH in plants—techniques and applications. Trends in Plant Science. 1999;4:258–63.

    Article  Google Scholar 

  13. Karp A. Preparation of chromosome spreads by root-tip meristem dissection for in situ hybridization with biotin-labeled probes. In: Isaac PG, editor. Methods in Molecular Biology—Protocols for nucleic acid analysis by nonradioactive probes. Totowa NJ: Humana; 1994. p. 149–51.

    Google Scholar 

  14. Leitch AR, Schwarzacher T, Jackson D, Leitch IJ. In situ hybridization. Oxford: Bios Scientific; 1994.

    Google Scholar 

  15. McClintock B. Chromosome morphology in Zea mays. Science. 1929;69:629.

    Article  PubMed  CAS  Google Scholar 

  16. Neuffer MG, Coe EH, Wessler SR. Mutants of maize. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 1997.

    Google Scholar 

  17. Rhoades MM. Meiosis in maize. J Hered. 1950;41:58–67.

    Google Scholar 

  18. Sadder MT, Ponelies N, Born U, Weber G. Physical localization of single-copy sequences on pachytene chromosomes in maize (Zea mays L.) by chromosome in situ suppression hybridization. Genome. 2000;43:1081–3.

    PubMed  CAS  Google Scholar 

  19. Sadder MT, Weber G. Karyotype of maize (Zea mays L.) mitotic metaphase chromosomes as revealed by fluorescence in situ hybridization (FISH) with cytogenetic DNA markers. Plant Mol Biol Rep. 2001;19:117–23.

    Article  CAS  Google Scholar 

  20. Shen DL, Wu M. Transmission electron microscopic study of maize pachytene chromosome 6. Biotech Histochem. 1989;64:65–73.

    Article  CAS  Google Scholar 

  21. Stein N, Ponelies N, Musket T, McMullen M, Weber G. Chromosome micro-dissection and region-specific libraries from pachytene chromosomes of maize (Zea mays L.). Plant J. 1998;13:281–9.

    Article  CAS  Google Scholar 

  22. Wang CJ, Harper L, Cande WZ. High-resolution single-copy gene fluorescence in situ hybridization and its use in the construction of a cytogenetic map of maize chromosome 9. Plant Cell. 2006;18:529–44.

    Article  PubMed  CAS  Google Scholar 

  23. Xu J, Earle ED. Direct FISH of 5S rDNA on tomato pachytene chromosomes places the gene at the heterochromatic knob immediately adjacent to the centromere of chromosome 1. Genome. 1996;39:216–21.

    Article  PubMed  CAS  Google Scholar 

  24. Xu J, Earle ED. High resolution physical mapping of 45S (5.8S, 18S and 25S) rDNA gene loci in the tomato genome using a combination of karyotyping and FISH of pachytene chromosomes. Chromosoma. 1996;104:545–50.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil) and FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais) for providing the financial support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Roberto Carvalho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caixeta, E.T., Carvalho, C.R. & Clarindo, W.R. Modified protocol for obtaining isolated and high-resolution pachytene chromosomes. Nucleus 54, 3–7 (2011). https://doi.org/10.1007/s13237-011-0023-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-011-0023-3

Keywords

Navigation