Skip to main content
Log in

Periodic Attractor in the Discrete Time Best-Response Dynamics of the Rock-Paper-Scissors Game

  • Published:
Dynamic Games and Applications Aims and scope Submit manuscript


The Rock-Paper-Scissors (RPS) game is a classic non-cooperative game widely studied in terms of its theoretical analysis as well as in its applications, ranging from sociology and biology to economics. In this work, we show that the attractor of the discrete time best-response dynamics of the RPS game is a finite union of periodic orbits. Moreover, we also describe the bifurcations of the attractor and determine the exact number, period and location of the periodic orbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others


  1. In fact, the smallest period is \(3\left( \left\lfloor \frac{\log (a/b)}{\log (1-\varepsilon )}\right\rfloor +1\right) \sim \frac{3\log (b/a)}{\varepsilon }\) as \(\varepsilon \rightarrow 0\).

  2. The inverse of the supergolden ratio.

  3. For every \(x\in {\mathbb {R}}\), \(x\le \lfloor x\rfloor <x+1\) and \(x-1<\lceil x \rceil \le x\).


  1. Andrea G, Josef H (1995) Fictitious play, shapley polygons, and the replicator equation. Games Econ Behav 11(2):279–303

    Article  MathSciNet  Google Scholar 

  2. Bednarik P, Hofbauer J (2017) Discretized best-response dynamics for the rock-paper-scissors game. J Dyn Games 4(1):75–86

    Article  MathSciNet  Google Scholar 

  3. Benaïm M, Hofbauer J, Sorin S (2012) Perturbations of set-valued dynamical systems, with applications to game theory. Dyn Games Appl 2(2):195–205

    Article  MathSciNet  Google Scholar 

  4. Brown GW (1951) Iterative solution of games by fictitious play. In: Koopmans TC (ed) Activity analysis of production and allocation. Wiley, New York, pp 374–376

    Google Scholar 

  5. Bruin H, Deane Jonathan HB (2009) Piecewise contractions are asymptotically periodic. Proc Am Math Soc 137(4):1389–1395

    Article  MathSciNet  Google Scholar 

  6. Cason TN, Friedman D, Hopkins E (2013) Cycles and instability in a rock-paper-scissors population game: a continuous time experiment. Rev Econ Stud 81(1):112–136

    Article  MathSciNet  Google Scholar 

  7. Catsigeras E, Guiraud P, Meyroneinc A, Ugalde E (2016) On the asymptotic properties of piecewise contracting maps. Dyn Syst 31(2):107–135

    Article  MathSciNet  Google Scholar 

  8. Del Magno G, Gaivão JP, Gutkin E (2015) Dissipative outer billiards: a case study. Dyn Syst 30(1):45–69

    Article  MathSciNet  Google Scholar 

  9. Gaivão JP (2018) Asymptotic periodicity in outer billiards with contraction. Ergodic Theory Dyn Syst 1–16

  10. Harris C (1998) On the rate of convergence of continuous-time fictitious play. Games Econom Behav 22(2):238–259

    Article  MathSciNet  Google Scholar 

  11. Hofbauer J, Sorin S (2006) Best response dynamics for continuous zero-sum games. Discrete Contin Dyn Syst B 6:215

    Article  MathSciNet  Google Scholar 

  12. Hopkins E, Seymour RM (2002) The stability of price dispersion under seller and consumer learning. Int Econ Rev 43(4):1157–1190

    Article  MathSciNet  Google Scholar 

  13. Krishna V, Sjöström T (1998) On the convergence of fictitious play. Math Oper Res 23(2):479–511

    Article  MathSciNet  Google Scholar 

  14. Laurent M, Nogueira A (2018) Rotation number of contracted rotations. J Mod Dyn 12:175–191

    Article  MathSciNet  Google Scholar 

  15. Maskin E, Tirole J (1988) A theory of dynamic oligopoly, II: price competition, kinked demand curves, and edgeworth cycles. Econometrica 56(3):571–599

    Article  MathSciNet  Google Scholar 

  16. Matsui A (1992) Best response dynamics and socially stable strategies. J Econ Theory 57(2):343–362

    Article  MathSciNet  Google Scholar 

  17. Monderer D, Samet D, Sela A (1997) Belief affirming in learning processes. J Econom Theory 73(2):438–452

    Article  MathSciNet  Google Scholar 

  18. Noel Michael D (2007) Edgeworth price cycles: evidence from the Toronto retail gasoline market. J Ind Econ 55(1):69–92

    Article  Google Scholar 

  19. Nogueira A, Pires B (2015) Dynamics of piecewise contractions of the interval. Ergodic Theory Dyn Syst 35(7):2198–2215

    Article  MathSciNet  Google Scholar 

  20. Nogueira A, Pires B, Rosales RA (2014) Asymptotically periodic piecewise contractions of the interval. Nonlinearity 27(7):1603–1610

    Article  MathSciNet  Google Scholar 

  21. Nogueira A, Pires B, Rosales RA (2018) Topological dynamics of piecewise \(\lambda \)-affine maps. Ergodic Theory Dyn Syst 38(5):1876–1893

    Article  MathSciNet  Google Scholar 

  22. Robinson J (1951) An iterative method of solving a game. Ann Math 2(54):296–301

    Article  MathSciNet  Google Scholar 

  23. Semmann D, Krambeck H-J, Milinski M (2003) Volunteering leads to rock-paper-scissors dynamics in a public goods game. Nature 425(6956):390–393

    Article  Google Scholar 

  24. Szolnoki A, Mobilia M, Jiang L-L, Szczesny B, Rucklidge AM, Perc M (2014) Cyclic dominance in evolutionary games: a review. J R Soc Interface 11(100):20140735

    Article  Google Scholar 

  25. Wang Zhijian X, Bin ZH-J (2014) Social cycling and conditional responses in the rock-paper-scissors game. Sci Rep 4:5830 EP

    Article  Google Scholar 

Download references


The authors were partially supported by the Project PTDC/MAT-PUR/29126/2017 and by the Project CEMAPRE—UID/MULTI/00491/2019 financed by FCT/MCTES through national funds. The authors also wish to express their gratitude to João Lopes Dias for stimulating conversations.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Telmo Peixe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Monotonicity Lemmas

Appendix A. Monotonicity Lemmas

Recall that

$$\begin{aligned} m=m_\alpha (\lambda ):=\min \{k\in {\mathbb {N}}:\lambda ^k<\alpha \}. \end{aligned}$$

and that \({\hat{B}}\) is the set of regular strategies in B, i.e. \({\hat{B}}=B\cap {\hat{\Delta }}\).

Lemma A.1

Let \(x\in {\hat{B}}\). If \(n(x)\ge m\), then \(n(P(x))\ge m\).


We suppose that \(m\ge 2\). Otherwise, there is nothing to prove. Let \(x\in B_k\) for some \(k\ge m\). Then,

$$\begin{aligned} S^2(u_\alpha )\cdot P(x)=\lambda ^{k} S(u_\alpha )\cdot x+(1-\lambda ^{k-1})(2+\alpha ). \end{aligned}$$

Since \(x\in B_k\), we have

$$\begin{aligned} S(u_\alpha )\cdot x&= 3-u_\alpha \cdot x-S^2(u_\alpha )\cdot x\\&> 3-(\lambda ^{-1}\alpha -\alpha +1)-b_k. \end{aligned}$$


$$\begin{aligned} S^2(u_\alpha )\cdot P(x)> 2+\alpha -\lambda ^{k-1}-\alpha \lambda ^{-1}. \end{aligned}$$

Therefore, to prove that \(n(P(x))\ge m\), it is sufficient to show that

$$\begin{aligned} g(\lambda ):=2+\alpha -\lambda ^{k-1}-\alpha \lambda ^{-1}-b_{m-1}>0. \end{aligned}$$

Notice that

$$\begin{aligned} g(\lambda )=\lambda ^{-1}(\alpha +1-\lambda ^{k}-\lambda ^{-m+1}\alpha ). \end{aligned}$$

Since \(\lambda ^m< \alpha \) and \(\lambda ^k\le \lambda ^m\), we get

$$\begin{aligned} g(\lambda )>\lambda ^{-1}(1-\lambda ^{-m+1}\alpha ). \end{aligned}$$

Again, by the definition of m, we have \(\lambda ^{m-1}\ge \alpha \). This shows that \(g(\lambda )>0\) as we wanted to prove. \(\square \)

Lemma A.2

Let \(x\in {\hat{B}}\) such that \(n(P(x))\ge m\). If \(n(P(x))\le n(x)\), then \(n(P^2(x))\le n(P(x))\).


We want to prove that given \(k\in {\mathbb {N}}\), if \(x\in B_k\) and \(P(x)\in B_j\) for some \(j\le k\), then \(P^2(x)\in B_i\) for some \(i\le j\), for any \(\alpha >0\) and \(\lambda \in (0,1)\) satisfying \(\lambda ^j< \alpha \).

So it is enough to see that

$$\begin{aligned} S^2(u_\alpha )\cdot P^2(x)<b_j=\lambda ^{-j-1}\alpha -\lambda ^{-1}(\alpha -1+(1-\lambda )(\alpha +2)). \end{aligned}$$

Since \(x\in B_k\),

$$\begin{aligned} P(x)=\lambda ^k S(x)+\lambda ^{k-1}(1-\lambda )e_1+(1-\lambda ^{k-1})e_2 \end{aligned}$$

and \(P(x)\in B_j\) implies that

$$\begin{aligned} P^2(x)&=\lambda ^j S(P(x))+\lambda ^{j-1}(1-\lambda )e_1+(1-\lambda ^{j-1})e_2 \\&=\lambda ^{j+k} S^2(x)+\lambda ^{j+k-1}(1-\lambda )e_3+\lambda ^j(1-\lambda ^{k-1})e_1+\lambda ^{j-1}(1-\lambda )e_1\\&\quad +(1-\lambda ^{j-1})e_2. \end{aligned}$$

Because \(S^2(u_\alpha )=(0,2+\alpha ,1-\alpha )\), we have that

$$\begin{aligned} S^2(u_\alpha )\cdot P^2(x) = \lambda ^{j+k} u_\alpha \cdot x-\lambda ^{j+k-1}(1-\lambda )(\alpha -1)+(1-\lambda ^{j-1})(2+\alpha ). \end{aligned}$$

But \(u_\alpha \cdot x<\alpha \left( \lambda ^{-1}-1\right) +1\), thus

$$\begin{aligned} S^2(u_\alpha )\cdot P^2(x)<Q_{j,k,\alpha }(\lambda ), \end{aligned}$$


$$\begin{aligned} Q_{j,k,\alpha }(\lambda ):=\lambda ^{j+k} \left( \lambda ^{-1}\alpha -\alpha +1 \right) -\lambda ^{j+k-1}(1-\lambda )(\alpha -1)+(1-\lambda ^{j-1})(2+\alpha ). \end{aligned}$$

Now, it is easy to see that \(Q_{j,k,\alpha }(\lambda )<b_j\) for every \(\alpha >0\) and \(\lambda \in (0,1)\) satisfying \(\lambda ^j<\alpha \). Indeed,

$$\begin{aligned} \lambda ^{j+1}( Q_{j,k,\alpha }(\lambda )-b_j)&=\lambda ^j \left( \lambda ^{j+k}-2 \lambda ^j+1\right) -\alpha \left( \lambda ^j-1\right) ^2\\&\le \lambda ^j \left( \lambda ^{2j}-2 \lambda ^j+1\right) -\alpha \left( \lambda ^j-1\right) ^2\\&= (\lambda ^j-1)^2(\lambda ^j-\alpha )<0. \end{aligned}$$

\(\square \)

Lemma A.3

Let \(x\in {\hat{B}}\) such that \(n(P(x))<m\). If \(n(P(x))\ge n(x)\), then \(n(P^2(x))\ge n(P(x))\).


The strategy of the proof is the same as that of the previous lemma. We want to prove that given \(k\in {\mathbb {N}}\), if \(x\in B_k\) and \(P(x)\in B_j\) for some \(k\le j<m\), then \(P^2(x)\in B_i\) for some \(i\ge j\), for any \(\alpha >0\) and \(\lambda \in (0,1)\) satisfying \(\lambda ^j\ge \alpha \).

It is enough to see that

$$\begin{aligned} S^2(u_\alpha )\cdot P^2(x)> b_{j-1}=\lambda ^{-j}\alpha -\lambda ^{-1}(\alpha -1+(1-\lambda )(\alpha +2)). \end{aligned}$$

As in the proof of the previous lemma, we have that

$$\begin{aligned} S^2(u_\alpha )\cdot P^2(x)&= \lambda ^{j+k} u_\alpha \cdot x-\lambda ^{j+k-1}(1-\lambda )(\alpha -1)+(1-\lambda ^{j-1})(2+\alpha ). \end{aligned}$$

But \(u_\alpha \cdot x>1\), so

$$\begin{aligned} S^2(u_\alpha )\cdot P^2(x)>Q_{j,k,\alpha }(\lambda ), \end{aligned}$$


$$\begin{aligned} Q_{j,k,\alpha }(\lambda ):=\lambda ^{j+k} -\lambda ^{j+k-1}(1-\lambda )(\alpha -1)+(1-\lambda ^{j-1})(2+\alpha ). \end{aligned}$$

Now, it is easy to see that \(Q_{j,k,\alpha }(\lambda )>b_{j-1}\) for every \(\alpha >0\) and \(\lambda \in (0,1)\) satisfying \(\lambda ^j\ge \alpha \). Indeed,

$$\begin{aligned} g_{j,k,\alpha }(\lambda )&:=\lambda ^{j+1}(Q_{j,k,\alpha }(\lambda )-b_{j-1}) \\&= \alpha \lambda ^{2j+k+1}-(\alpha -1)\lambda ^{2j+k}-(2+\alpha )\lambda ^{2j}+(1+2\alpha )\lambda ^j-\alpha \lambda \\&=\alpha (1-\lambda )(1-\lambda ^{2j+k})+ \lambda ^{2j+k}-(2+\alpha )\lambda ^{2j}+(1+2\alpha )\lambda ^j-\alpha \\&>\lambda ^{2j+k}-(2+\alpha )\lambda ^{2j}+(1+2\alpha )\lambda ^j-\alpha \\&\ge \lambda ^{3j}-(2+\alpha )\lambda ^{2j}+(1+2\alpha )\lambda ^j-\alpha \\&= \lambda ^{3j}-3\lambda ^{2j}+3\lambda ^j-1-(\alpha -1)(\lambda ^{2j}-2\lambda ^j+1)\\&= (\lambda ^j-1)^3-(\alpha -1)(\lambda ^j-1)^2\\&= (\lambda ^j-1)^2\left( \lambda ^j-\alpha \right) \ge 0. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaivão, J.P., Peixe, T. Periodic Attractor in the Discrete Time Best-Response Dynamics of the Rock-Paper-Scissors Game. Dyn Games Appl 11, 491–511 (2021).

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Mathematics Subject Classification