Skip to main content
Log in

Three-Player Games with Strategy-Dependent Time Delays

  • Published:
Dynamic Games and Applications Aims and scope Submit manuscript

Abstract

We analyze replicator dynamics with strategy-dependent time delays in a certain three-player game with one pure and two mixed Nash equilibria. In such a model, new players are born from parents who interacted in the past. We show that stationary states depend on time delays. Moreover, at certain time delays, interior equilibria cease to exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alboszta J, Miȩkisz J (2004) Stability of evolutionarily stable strategies in discrete replicator dynamics with time delay. J Theor Biol 231:175–179

    Article  MathSciNet  Google Scholar 

  2. Ben Khalifa N, El-Azouzi R, Hayel Y (2018) Discrete and continuous distributed delays in replicator dynamics. Dyn Games Appl 8:713–732

    Article  MathSciNet  Google Scholar 

  3. Ben Khalifa N, El-Azouzi R, Hayel Y, Mabrouki I (2016) Evolutionary games in interacting communities. Dyn Games Appl 7:131–156

    Article  MathSciNet  Google Scholar 

  4. Bodnar M (2000) On the nonnegativity of solutions of delay differential equations. Appl Math Lett 13:91–95

    Article  MathSciNet  Google Scholar 

  5. Broom M, Cannings C, Vickers GT (1997) Multi-player matrix games. Bull Math Biol 59:931–952

    Article  Google Scholar 

  6. Broom M, Cannings C (2002) Modelling dominance hierarchy formation as a multi-player game. J Theor Biol 219:397–413

    Article  MathSciNet  Google Scholar 

  7. Broom M, Rychtář J (2012) A general framework for analysing multiplayer games in networks using territorial interactions as a case study. J Theor Biol 302:70–80

    Article  MathSciNet  Google Scholar 

  8. Bukowski M, Miȩkisz J (2004) Evolutionary and asymptotic stability in symmetric multi-player games. Int J Game Theory 33:41–54

    Article  MathSciNet  Google Scholar 

  9. Gokhale CS, Traulsen A (2010) Evolutionary games in the multiverse. Proc Natl Acad Sci USA 107:5500–5504

    Article  MathSciNet  Google Scholar 

  10. Gokhale CS, Traulsen A (2011) Strategy abundance in evolutionary many-player games with multiple strategies. J Theor Biol 83:180–191

    Article  MathSciNet  Google Scholar 

  11. Gokhale CS, Traulsen A (2012) Mutualism and evolutionary multiplayer games: revisiting the Red King. Proc R Soc B 279(1747):4611–4616

    Article  Google Scholar 

  12. Haigh J, Canning C (1989) The n-person war of attrition. Acta Appl Math 14:59–74

    Article  MathSciNet  Google Scholar 

  13. Hofbauer J, Shuster P, Sigmund K (1979) A note on evolutionarily stable strategies and game dynamics. J Theor Biol 81:609–612

    Article  Google Scholar 

  14. Hofbauer J, Sigmund K (1998) Evolutionary games and population dynamics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  15. Iijima R (2011) Heterogeneous information lags and evolutionary stability. Math Soc Sci 63:83–85

    Article  MathSciNet  Google Scholar 

  16. Iijima R (2012) On delayed discrete evolutionary dynamics. J Theor Biol 300:1–6

    Article  MathSciNet  Google Scholar 

  17. Kamiński D, Miȩkisz J, Zaborowski M (2005) Stochastic stability in three-player games. Bull Math Biol 67:1195–1205

    Article  MathSciNet  Google Scholar 

  18. Kim Y (1996) Equilibrium selection in n-person coordination games. Games Econ Behav 15:203–227

    Article  MathSciNet  Google Scholar 

  19. Křivan V, Cressman R (2017) Interaction times change evolutionary outcome: two-player matrix games. J Theor Biol 416:199–207

    Article  MathSciNet  Google Scholar 

  20. Kuang J (1993) Delay differential equations with applications in population dynamics. Academic Press, London

    MATH  Google Scholar 

  21. Maynard Smith J, Price GR (1973) The logic of animal conflict. Nature (London) 246:15–18

    Article  Google Scholar 

  22. Maynard Smith J (1982) Evolution and the theory of games. Cambridge University Press, Cambridge

    Book  Google Scholar 

  23. Miȩkisz J (2004) Stochastic stability in spatial three-player games. Physica A 343:175–184

    Article  MathSciNet  Google Scholar 

  24. Miȩkisz J, Wesołowski S (2011) Stochasticity and time delays in evolutionary games. Dyn Games Appl 1:440–448

    Article  MathSciNet  Google Scholar 

  25. Miȩkisz J, Matuszak M, Poleszczuk J (2014) Stochastic stability in three-player games with time delays. Dyn Games Appl 4:489–498

    Article  MathSciNet  Google Scholar 

  26. Miȩkisz J, Bodnar M (2019) Replicator dynamics with strategy-dependent time delays, preprint

  27. Moreira JA, Pinheiro FL, Nunes N, Pacheco JM (2012) Evolutionary dynamics of collective action when individual fitness derives from group decisions taken in the past. J Theor Biol 298:8–15

    Article  MathSciNet  Google Scholar 

  28. Oaku H (2002) Evolution with delay. Jpn Econ Rev 53:114–133

    Article  MathSciNet  Google Scholar 

  29. Pacheco JM, Santos FC, Souza MO, Skyrms B (2009) Evolutionary dynamics of collective action in n-person stag hunt dilemmas. Proc R Soc B 276:315

    Article  Google Scholar 

  30. Santos MD, Pinheiro FL, Santos FC, Pacheco JM (2012) Dynamics of N-person snowdrift games in structured populations. J Theor Biol 315:81–86

    Article  MathSciNet  Google Scholar 

  31. Souza MO, Pacheco JM, Santos FC (2009) Evolution of cooperation under N-person snowdrift games. J Theor Biol 260:581–588

    Article  MathSciNet  Google Scholar 

  32. Tao Y, Wang Z (1997) Effect of time delay and evolutionarily stable strategy. J Theor Biol 187:111–116

    Article  Google Scholar 

  33. Taylor PD, Jonker LB (1978) Evolutionarily stable strategy and game dynamics. Math Biosci 40:145–156

    Article  MathSciNet  Google Scholar 

  34. Weibull J (1995) Evolutionary game theory. MIT Press, Cambridge

    MATH  Google Scholar 

  35. Wesson E, Rand R (2016) Hopf bifurcations in delayed rock-paper-scissors replicator dynamics. Dyn Games Appl l6:139–156

    Article  MathSciNet  Google Scholar 

  36. Wesson E, Rand R, Rand D (2016) Hopf bifurcations in two-strategy delayed replicator dynamics. J Bifurc Chaos 26(1650006):1–13

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the National Science Centre, Poland for a financial support under the Grant No. 2015/17/B/ST1/00693.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Miȩkisz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 1

Let us denote \(\alpha =\frac{\tau _A}{\tau _A-\tau _B}\). The equation \(F(x)=0\) is equivalent to \(F_L(x)= F_R(x)\), where

$$\begin{aligned} F_L(x)= & {} \frac{\alpha }{\tau _A}\ln \left( \frac{x^2 + 2(1- x)^2}{4(1 - x)x + (1-x)^2}\right) , \\ F_R(x)= & {} \Bigl (x^2 + 2(1- x)^2\Bigr ) \left( \frac{4(1 - x)x + (1-x)^2}{x^2+ 2(1- x)^2}\right) ^{\alpha }. \end{aligned}$$

First, we consider the case \(\tau _B>\tau _A\). We calculate the second derivative of \(F_L\) with respect to x and we get

$$\begin{aligned} \begin{aligned} F_L'(x)&= -\frac{2\alpha }{\tau _A} \frac{3x^2-9x+4}{(1-x)(3x+1)\Bigl (\bigl (x\sqrt{3}-\frac{2}{\sqrt{3}}\bigr )^2+\frac{2}{3}\Bigr )}, \\ F_L''(x)&= \frac{\alpha }{\tau _A}\left( \frac{1}{(x-1)^2}+\frac{9}{(3x+1)^2}+\frac{8}{(3x^2-4x+2) ^2}-\frac{6}{3x^2-4x+2}\right) . \end{aligned} \end{aligned}$$

After some computations (reducing the expression in brackets to a common denominator and plotting—or estimating—a polynomial of the fifth degree of the numerator) it is possible to show that \(F_L''(x)<0\) for all \(x\in (0,1)\) and \(\alpha <0\). Thus, \(F_L\) is concave. On the other hand, the derivatives of \(F_R\) read

$$\begin{aligned} \begin{aligned} F_R'(x)&= \frac{\bigl (4(1 - x)x + (1-x)^2\bigr )^{\alpha -1}}{\bigl (x^2 + 2(1- x)^2\bigr )^{\alpha }} \Bigl (2\alpha \bigl (x^2-5x^2+2\bigr )+2(x(x-1)(3x+1)\Bigr ),\\ F_R''(x)&= 2\frac{\bigl (4(1 - x)x + (1-x)^2\bigr )^{\alpha -2}}{\bigl (x^2 + 2(1- x)^2\bigr )^{\alpha +1}} h(x), \end{aligned} \end{aligned}$$

where

$$\begin{aligned} h(x)= & {} 2 \alpha ^2 \left( 3 x^2-9 x+4\right) ^2-\alpha \left( 54 x^5-171 x^4+120 x^3+111 x^2-156 x+50\right) \\&+\,3 (x-1)^2 \left( 3 x^2-4 x+2\right) (3 x+1)^2. \end{aligned}$$

Plotting the polynomial of the fifth degree shows that the coefficient in \(\alpha \) is positive for \(x\in (0,1)\), and therefore, \(h(x)<0\) for \(x\in (0,1)\). Thus, \(F_R\) is convex. This proves that equation \(F_L(x)=F_R(x)\) has at most two solutions in (0, 1).

Note that in this case (\(\tau _A<\tau _B\)), we have

$$\begin{aligned} \lim _{x\rightarrow 0+} F_L(x) = -\frac{|\alpha |}{\tau _A}\ln 2<0, \quad \lim _{x\rightarrow 1-} F_L(x) = -\infty , \end{aligned}$$

and

$$\begin{aligned} \lim _{x\rightarrow 0+} F_R(x) = 2^{1-\alpha }>0, \quad \lim _{x\rightarrow 1-} F_R(x) = 0. \end{aligned}$$

If we compare the value of \(F_L\) and \(F_R\) at \(x=\frac{1}{2}\), we deduce that if

$$\begin{aligned} \tau _A<\tau _B<\tau _A+\frac{4}{3}\ln \frac{5}{3}, \end{aligned}$$

then \(F_L(\frac{1}{2}) > F_R(\frac{1}{2})\) so there are exactly two solutions of \(F_L(x)=F_R(x)\) in the interval (0, 1).

On the other hand, one can easily estimate that

$$\begin{aligned} F_L(x) \le \frac{\alpha }{\tau _A} \ln \frac{\sqrt{33}-1}{8} \end{aligned}$$

for all \(x\in (0,1)\). Because \((1-x)^2+4x(1-x)\le 4/3\) and \(x^2 + 2(1- x)^2\ge \frac{2}{3}\), one deduce that \(F_R(x) \ge \frac{1}{2}\). This completes the proof of part (ii) of the theorem.

Now, assume that \(\tau _A>\tau _{B}\) which implies that \(\alpha >1\). In this case, it is convenient to change variables. Let

$$\begin{aligned} y = \frac{1-x}{x} \; \Longleftrightarrow \; x = \frac{1}{1+y}. \end{aligned}$$

The problem of finding solution of \(F_L(x)=F_R(x)\) for \(x\in (0,1)\) transforms to the problem of finding solution of \(G_L(y)=G_R(y)\) for \(y>0\), where

$$\begin{aligned} G_L(y) = -\frac{\alpha }{\tau _A} \ln \left( \frac{4y+y^2}{1+2y^2}\right) , \quad G_R(y) = \frac{1+2y^2}{(1+y)^2}\left( \frac{4y+y^2}{1+2y^2}\right) ^\alpha . \end{aligned}$$

It is very easy to calculate limits of \(G_L\) and \(G_R\) at 0 and at \(+\infty \) and get

$$\begin{aligned} \begin{aligned} \lim _{y\rightarrow 0+} G_L(y)&= +\infty ,&\qquad \lim _{y\rightarrow +\infty } G_L(y)&= \frac{\alpha }{2}\ln 2, \\ \lim _{y\rightarrow 0+} G_R(y)&= 0,&\lim _{y\rightarrow +\infty } G_R(y)&= 2^{1-\alpha }. \end{aligned} \end{aligned}$$

We calculate the derivative of \(G_L\) and we get

$$\begin{aligned} G_L'(y) = \frac{2\alpha }{\tau _{A}}\cdot \frac{4y^2-y-2}{y(4+y)(1+2y^2)}. \end{aligned}$$

It is easy to see that for \(\alpha >1\), the function \(G_L\) is decreasing for \(y\in (0,{\tilde{y}})\) with \(\displaystyle {\tilde{y}} = \frac{1+\sqrt{33}}{8}\), and it is increasing for \(y>{\tilde{y}}\). Note also that

$$\begin{aligned} G_L({\tilde{y}}) = -\frac{\alpha }{\tau _{A}}\ln \left( \frac{2{\tilde{y}}({\tilde{y}}+2{\tilde{y}}^2)+{\tilde{y}}(2+{\tilde{y}}-4{\tilde{y}}^2)}{1+2{\tilde{y}}^2}\right) = -\frac{\alpha }{\tau _{A}}\ln (2{\tilde{y}}) <0, \end{aligned}$$

while \(G_R(Y)>0\) for \(y>0\). Now, we prove that \(G_R\) is increasing on \((0,{\tilde{y}})\). We calculate the derivative of \(G_R\) with respect to y and we obtain

$$\begin{aligned} G_R'(y) = \frac{2(4y+y^2)^{\alpha -1}}{(1+2y^2)^\alpha (1+y)^3} g(y) \end{aligned}$$

with

$$\begin{aligned} g(y) = (1+2y^2)(2-y) + (1+y)(2+y-4y^2)(\alpha -1). \end{aligned}$$

Because \({\tilde{y}}<2\) and \(\alpha >1\), we easily see that \(g(y)>0\) for \(y\in (0,{\tilde{y}})\). Thus, \(G_R\) is increasing in \((0,{\tilde{y}})\), and therefore, there exists exactly one solution of \(G_L(y)=G_R(y)\) in \((0,{\tilde{y}})\).

One can see that \(G_L(x) =0\) for \({\hat{y}}_1=2-\sqrt{3}\) and \({\hat{y}}_2=2+\sqrt{3}\). As \({\hat{y}}_2>2>{\tilde{y}}\), we see that \(g(y)<0\) for \(y>{\hat{y}}_2\), thus \(G_R\) is decreasing while \(G_L\) is increasing for \(y>{\hat{y}}_2\). Thus, the second solution to \(G_L(y)=G_R(y)\) exists in the interval \(({\tilde{y}}, +\infty )\) if and only if \(G_L(+\infty )>G_R(+\infty )\), that is \(\alpha \ln 2 > 2^{1-\alpha }\). Some simple algebra finishes the proof of the theorem. \(\square \)

1.1 Formula Used for Drawing Stationary Solutions

Here, we derive a formula that gives us a better relation between \(\tau _A\), \(\tau _B\), and \({\bar{x}}\) than the equation \(F(x)=0\). As before, let us denote

$$\begin{aligned} \alpha =\frac{\tau _A}{\tau _A-\tau _B}, \quad U_A = x^2 + 2(1- x)^2, \quad U_B = 4(1 - x)x + (1-x)^2. \end{aligned}$$

The equation \(F(x)=0\) is then equivalent to

$$\begin{aligned} \frac{1}{\tau _{A}}\alpha \ln \frac{U_A}{U_B} = U_A \biggl (\frac{U_A}{U_B}\biggr )^\alpha \; \Longleftrightarrow \; \tau _A U_A = \ln \biggl (\frac{U_A}{U_B}\biggr )^\alpha \exp \Biggl (\ln \biggl (\frac{U_A}{U_B}\biggr )^\alpha \Biggr ). \end{aligned}$$

Thus,

$$\begin{aligned} \ln \biggl (\frac{U_A}{U_B}\biggr )^\alpha = W_L(\tau _A U_A) \; \Longleftrightarrow \; \alpha = \frac{ W_L(\tau _A U_A)}{\ln \frac{U_A}{U_B}}, \end{aligned}$$

where \(W_L\) is a Lambert W function, that is \(x = W_L(x)\exp \bigl (W_L(x)\bigr )\). Now, using the definition of \(\alpha \) we get

$$\begin{aligned} \frac{\tau _{A}}{\tau _A-\tau _B} = \frac{ W_L(\tau _A U_A)}{\ln \frac{U_A}{U_B}} \; \Longleftrightarrow \; \tau _{B} = \tau _{A}\Biggl (1-\frac{\ln \frac{U_A}{U_B}}{W_L(\tau _AU_A)}\Biggr ). \end{aligned}$$

In this manner, we get a relation between \(\tau _A\) and \(\tau _B\) at the stationary state x, namely

$$\begin{aligned} \tau _{B} = \tau _{A}\Biggl (1-\frac{\ln \frac{x^2 + 2(1- x)^2}{4(1 - x)x + (1-x)^2}}{W_L\bigl ((x^2 + 2(1- x)^2)\tau _A\bigr )}\Biggr ). \end{aligned}$$
(17)

In an analogous manner—denoting \(\beta = \frac{\tau _B}{\tau _A+\tau _B}\)—we get another relation between \(\tau _A\) and \(\tau _B\) at the stationary state x, namely

$$\begin{aligned} \tau _{A} = \tau _{B}\Biggl (1+\frac{\ln \frac{x^2 + 2(1- x)^2}{4(1 - x)x + (1-x)^2}}{W_L\bigl ((4(1 - x)x + (1-x)^2)\tau _B\bigr )}\Biggr ). \end{aligned}$$
(18)

We used formulas (17) and (18) to draw Fig. 2a.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodnar, M., Miȩkisz, J. & Vardanyan, R. Three-Player Games with Strategy-Dependent Time Delays. Dyn Games Appl 10, 664–675 (2020). https://doi.org/10.1007/s13235-019-00340-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13235-019-00340-0

Keywords

Navigation