Skip to main content
Log in

Evolutionary Multiplayer Games

  • Published:
Dynamic Games and Applications Aims and scope Submit manuscript

Abstract

Evolutionary game theory has become one of the most diverse and far reaching theories in biology. Applications of this theory range from cell dynamics to social evolution. However, many applications make it clear that inherent non-linearities of natural systems need to be taken into account. One way of introducing such non-linearities into evolutionary games is by the inclusion of multiple players. An example are social dilemmas, where group benefits could e.g. increase less than linear with the number of cooperators. Such multiplayer games can be introduced in all the fields where evolutionary game theory is already well established. However, the inclusion of non-linearities can help to advance the analysis of systems which are known to be complex, e.g. in the case of non-Mendelian inheritance. We review the diachronic theory and applications of multiplayer evolutionary games and present the current state of the field. Our aim is a summary of the theoretical results from well-mixed populations in infinite as well as finite populations. We also discuss examples from three fields where the theory has been successfully applied, ecology, social sciences and population genetics. In closing, we probe certain future directions which can be explored using the complexity of multiplayer games while preserving the promise of simplicity of evolutionary games.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chakra MA, Traulsen A (2012) Evolutionary dynamics of strategic behavior in a collective-risk dilemma. PLoS Comput Biol 8(e1002):652

    Google Scholar 

  2. Albin PS, Foley DK (2001) The co-evolution of cooperation and complexity in a multi-player, local-interaction prisoners’ dilemma. Complexity 6(3):54–63

    Google Scholar 

  3. Altenberg L (2010) Proof of the Feldman–Karlin conjecture on the maximum number of equilibria in an evolutionary system. Theor Popul Biol 77(4):263–269

    Google Scholar 

  4. Altrock PM, Traulsen A (2009) Fixation times in evolutionary games under weak selection. New J Phys 11:013012

    Google Scholar 

  5. Altrock PM, Gokhale CS, Traulsen A (2010) Stochastic slowdown in evolutionary processes. Phys Rev E 82:011925

    Google Scholar 

  6. Altrock PM, Traulsen A, Galla T (2012) The mechanics of stochastic slowdown in evolutionary games. J Theor Biol 311:94–106

    MathSciNet  Google Scholar 

  7. Antal T, Scheuring I (2006) Fixation of strategies for an evolutionary game in finite populations. Bull Math Biol 68:1923–1944

    MATH  MathSciNet  Google Scholar 

  8. Antal T, Nowak MA, Traulsen A (2009a) Strategy abundance in \(2\times 2\) games for arbitrary mutation rates. J Theor Biol 257:340–344

    MathSciNet  Google Scholar 

  9. Antal T, Traulsen A, Ohtsuki H, Tarnita CE, Nowak MA (2009b) Mutation-selection equilibrium in games with multiple strategies. J Theor Biol 258:614–622

    MathSciNet  Google Scholar 

  10. Archetti M (2000) The origin of autumn colours by coevolution. J Theor Biol 205:625–630

    Google Scholar 

  11. Archetti M, Scheuring I (2012) Review: evolution of cooperation in one-shot social dilemmas without assortment. J Theor Biol 299:9–20

    MathSciNet  Google Scholar 

  12. Archetti M, Scheuring I, Hoffman M, Frederickson ME, Pierce NE, Yu DW (2011) Economic game theory for mutualism and cooperation. Ecol Lett 14(12):1300–1312

    Google Scholar 

  13. Aumann RJ (2006) War and peace. Proc Natl Acad Sci USA 103(46):17,075–17,078

    Google Scholar 

  14. Aviles L (1999) Cooperation and non-linear dynamics: an ecological perspective on the evolution of sociality. Evol Ecol Res 1:459–477

    Google Scholar 

  15. Axelrod R (1984) The evolution of cooperation. Basic Books, New York

    Google Scholar 

  16. Axelrod R, Axelrod DE, Pienta KJ (2006) Evolution of cooperation among tumor cells. Proc Natl Acad Sci USA 103(36):13,474–13,479

    Google Scholar 

  17. Bach LA, Bentzen SM, Alsner J, Christiansen FB (2001) An evolutionary-game model of tumour-cell interactions: possible relevance to gene therapy. Eur J Cancer 37:2116–2120

    Google Scholar 

  18. Bach LA, Helvik T, Christiansen FB (2006) The evolution of \(n\)-player cooperation - threshold games and ESS bifurcations. J Theor Biol 238:426–434

    MathSciNet  Google Scholar 

  19. Bartholomew GA Jr (1942) The fishing activities of double-crested cormorants on San Francisco Bay. The Condor 44(1):13–21

    Google Scholar 

  20. Barton NH, Turelli M (1991) Natural and sexual selection on many loci. Genetics 127(1):229–255

    Google Scholar 

  21. Basanta D, Deutsch A (2008) A game theoretical perspective on the somatic evolution of cancer. In: Bellomo N, Angelis E (eds) Selected topics in cancer modeling. Springer, Heidelberg, pp 97–112

    Google Scholar 

  22. Beeman RW, Friesen KS, Denell RE (1992) Maternal-effect selfish genes in flour beetles. Science 256:89–92

    Google Scholar 

  23. Bergstrom CT, Lachmann M (2003) The Red King effect: when the slowest runner wins the coevolutionary race. Proc Natl Acad Sci USA 100:593–598

    Google Scholar 

  24. Bishop DT, Cannings C (1976) Models of animal conflict. Adv Appl Probab 8(4):616–621

    MATH  Google Scholar 

  25. Broom M, Rychtář J (2008) An analysis of the fixation probability of a mutant on special classes of non-directed graphs. Proc R Soc A 464:2609–2627

    MATH  Google Scholar 

  26. Broom M, Rychtář J (2013) Game-theoretical models in biology. Chapman and Hall/CRC, London

    MATH  Google Scholar 

  27. Broom M, Cannings C, Vickers GT (1993) On the number of local maxima of a constrained quadratic form. Proc R Soc A: Math Phys Eng Sci 443(1919):573–584

    MATH  MathSciNet  Google Scholar 

  28. Broom M, Cannings C, Vickers GT (1994) Sequential methods for generating patterns of ess’s. J Math Biol 32:597–615

    MATH  MathSciNet  Google Scholar 

  29. Broom M, Cannings C, Vickers G (1997) Multi-player matrix games. Bull Math Biol 59(5):931–952

    MATH  Google Scholar 

  30. Broom M, Rychtář J, Stadler B (2009) Evolutionary dynamics on small-order graphs. J Interdiscip Math 12:129–140

    MATH  Google Scholar 

  31. Bukowski M, Miekisz J (2004) Evolutionary and asymptotic stability in symmetric multi-player games. Int J Game Theory 33(1):41–54

    MATH  MathSciNet  Google Scholar 

  32. Cannings C, Vickers GT (1988) Patterns of ESS’s. II. J Theor Biol 132(4):409–420

    MathSciNet  Google Scholar 

  33. Cannings C, Tyrer JP, Vickers GT (1993) Routes to polymorphism. J Theor Biol 165(2):213–223

    Google Scholar 

  34. Christiansen FB (1988) The effect of population subdivision on multiple loci without selection. Mathematical evolutionary theory. Princeton University Press, Princeton, pp 71–85

    Google Scholar 

  35. Cressman R (1988) Frequency-dependent viability selection (a single-locus, multi-phenotype model). J Theor Biol 130:147–165

    MathSciNet  Google Scholar 

  36. Cressman R (2003) Evolutionary dynamics and extensive form games. MIT Press, Cambridge

    MATH  Google Scholar 

  37. Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper and Row, New York

    MATH  Google Scholar 

  38. Damore JA, Gore J (2011) A slowly evolving host moves first in symbiotic interactions. Evolution 65(8):2391–2398

    Google Scholar 

  39. Darwin C (1859) On the origin of species by means of natural selection. Reprinted in Harvard University Press (1964), Cambridge-London

  40. Dawkins R (1982) The extended phenotype. Oxford University Press, Oxford

    Google Scholar 

  41. Düsing, C (1884) Jenaische Zeitschrift für Naturwissenschaft, Gustav Fischer, Die Regulierung des Geschlechtsverhältnisses bei der Vermehrung der Menschen, Tiere und Pflanzen 17:593–940.

  42. Edwards AW (2000) Carl Düsing (1884) on the regulation of the sex-ratio. Theor Pop Biol 58:255–257

    Google Scholar 

  43. Eshel I, Motro U (1988) The three brothers’ problem: kin selection with more than one potential helper. 1. The case of immediate help. Am Nat 132:550–566

    Google Scholar 

  44. Ewens WJ (1979) Mathematical population genetics. Springer, Berlin

    MATH  Google Scholar 

  45. Feldman MW, Franklin I, Thomson GJ (1974) Selection in complex genetic systems. I. The symmetric equilibria of the three-locus symmetric viability model. Genetics 76(1):135–162

    Google Scholar 

  46. Ficici S, Pollack J (2000) Effects of finite populations on evolutionary stable strategies. In: Whitley D, Goldberg D, Cantu-Paz E, Spector L, Parmee I, Beyer HG (eds) Proceedings GECCO. Morgan-Kaufmann, San Francisco, pp 927–934

    Google Scholar 

  47. Fisher RA (1930) The genetical theory of natural selection. Clarendon Press, Oxford

    MATH  Google Scholar 

  48. Fisher RA (1958) Polymorphism and natural selection. J Ecol 46(2):289–293

    Google Scholar 

  49. Fogel G, Andrews P, Fogel D (1998) On the instability of evolutionary stable strategies in small populations. Ecol Model 109:283–294

    Google Scholar 

  50. Foster D, Young P (1990) Stochastic evolutionary game dynamics. Theor Popul Biol 38:219–232

    MATH  MathSciNet  Google Scholar 

  51. Frey E (2010) Evolutionary game theory: theoretical concepts and applications to microbial communities. Phys A 389(20):4265–4298

    MATH  MathSciNet  Google Scholar 

  52. Fudenberg D, Imhof LA (2006) Imitation processes with small mutations. J Eco Theory 131:251–262

    MATH  MathSciNet  Google Scholar 

  53. Galla T, Farmer JD (2013) Complex dynamics in learning complicated games. Proc Natl Acad Sci USA 110(4):1232–1236

    MATH  MathSciNet  Google Scholar 

  54. Ganzfried S, Sandholm T (2009) Computing equilibria in multiplayer stochastic games of imperfect information. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI).

  55. Goel N, Richter-Dyn N (1974) Stochastic models in biology. Academic Press, New York

    Google Scholar 

  56. Gokhale CS, Traulsen A (2010) Evolutionary games in the multiverse. Proc Natl Acad Sci USA 107:5500–5504

    Google Scholar 

  57. Gokhale CS, Traulsen A (2011) Strategy abundance in evolutionary many-player games with multiple strategies. J Theor Biol 238:180–191

    MathSciNet  Google Scholar 

  58. Gokhale CS, Traulsen A (2012) Mutualism and evolutionary multiplayer games: revisiting the Red King. Proc R Soc B 279:4611–4616

    Google Scholar 

  59. Haigh J, Cannings C (1989) The n-person war of attrition. Acta Appl Math 14:59–74

    MATH  MathSciNet  Google Scholar 

  60. Hamilton W (1967) Extraordinary sex ratios. Science 156:477–488

    Google Scholar 

  61. Han TA, Traulsen A, Gokhale CS (2012) On equilibrium properties of evolutionary multi-player games with random payoff matrices. Theor Popul Biol 81:264–272

    Google Scholar 

  62. Hardin G (1968) The tragedy of the commons. Science 162:1243–1248

    Google Scholar 

  63. Hashimoto K, Aihara K (2009) Fixation probabilities in evolutionary game dynamics with a two-strategy game in finite diploid populations. J Theor Biol 258:637–645

    MathSciNet  Google Scholar 

  64. Hauert C, Michor F, Nowak MA, Doebeli M (2006) Synergy and discounting of cooperation in social dilemmas. J Theor Biol 239:195–202

    MathSciNet  Google Scholar 

  65. Hauert C, Traulsen A, Brandt H, Nowak MA, Sigmund K (2007) Via freedom to coercion: the emergence of costly punishment. Science 316:1905–1907

    MATH  MathSciNet  Google Scholar 

  66. Hilbe C, Nowak MA, Sigmund K (2013) The evolution of extortion in iterated prisoner’s dilemma games. Proc Natl Acad Sci USA 110:6913–6918

    MATH  MathSciNet  Google Scholar 

  67. Hofbauer J, Sigmund K (1998) Evolutionary games and population dynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  68. Huang W, Haubold B, Hauert C, Traulsen A (2012) Emergence of stable polymorphism driven by evolutionary games between mutants. Nat Commun 3:919

    Google Scholar 

  69. Imhof LA, Nowak MA (2006) Evolutionary game dynamics in a Wright-Fisher process. J Math Biol 52:667–681

    MATH  MathSciNet  Google Scholar 

  70. Imhof LA, Nowak MA (2010) Stochastic evolutionary dynamics of direct reciprocity. Proc R Soc B 277:463–468

    Google Scholar 

  71. Imhof LA, Fudenberg D, Nowak MA (2005) Evolutionary cycles of cooperation and defection. Proc Natl Acad Sci USA 102:10,797–10,800

    Google Scholar 

  72. Kamiński D, Miekisz J, Zaborowski M (2005) Stochastic stability in three-player games. Bull Math Biol 67(6):1195–1205

    MathSciNet  Google Scholar 

  73. Kandori M, Mailath GJ, Rob R (1993) Learning, mutation, and long run equilibria in games. Econometrica 61:29–56

    MATH  MathSciNet  Google Scholar 

  74. Karlin S (1980) The number of stable equilibria for the classical one-locus multiallele selection model. J Math Biol 9(2):189–192

    MATH  MathSciNet  Google Scholar 

  75. Karlin S, Feldman MW (1969) Linkage and selection: new equilibrium properties of the two-locus symmetric viability model. Proc Natl Acad Sci USA 62(1):70–74

    Google Scholar 

  76. Karlin S, Feldman MW (1970) Linkage and selection: two locus symmetric viability model. Theor Popul Biol 1(1):39–71

    MATH  MathSciNet  Google Scholar 

  77. Karlin S, Liberman U (1979) Central equilibria in multilocus systems. I. Generalized nonepistatic selection regimes. Genetics 91(4):777–798

    MathSciNet  Google Scholar 

  78. Karlin S, McGregor J (1972) Polymorphisms for genetic and ecological systems with weak coupling. Theor Popul Biol 3:210–238

    MATH  MathSciNet  Google Scholar 

  79. Karlin S, Taylor HMA (1975) A first course in stochastic processes, 2nd edn. Academic, London

    MATH  Google Scholar 

  80. Kim Y (1996) Equilibrium selection in \(n\)-person coordination games. Games Econ Behav 15:203–227

    MATH  Google Scholar 

  81. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  82. Kingman JFC (1982) On the genealogy of large populations. J Appl Probab 19A:27–43

    MathSciNet  Google Scholar 

  83. Kurokawa S, Ihara Y (2009) Emergence of cooperation in public goods games. Proc R Soc B 276:1379–1384

    Google Scholar 

  84. Kurokawa SS, Ihara Y (2013) Evolution of social behavior in finite populations: a payoff transformation in general n-player games and its implications. Theor Popul Biol 84:1–8

    MATH  Google Scholar 

  85. Lessard S (2011) On the robustness of the extension of the one-third law of evolution to the multi-player game. Dyn Games Appl 1:408–418

    MATH  MathSciNet  Google Scholar 

  86. Lessard S, Ladret V (2007) The probability of fixation of a single mutant in an exchangeable selection model. J Math Biol 54:721–744

    MATH  MathSciNet  Google Scholar 

  87. Lewontin RC (1961) Evolution and the theory of games. J Theor Biol 1:382–403

    Google Scholar 

  88. Lotka AJ (1932) The growth of mixed populations: two species competing for a common food supply. J Washington Acad Sci 22:461–469

    Google Scholar 

  89. May RM (1972) Will a large complex system be stable? Nature 238:413–414

    Google Scholar 

  90. Smith JM (1982) Evolution and the theory of games. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  91. Smith JM, Price GR (1973) The logic of animal conflict. Nature 246:15–18

    Google Scholar 

  92. Miekisz J (2004a) Stochastic stability in spatial games. J Stat Phys 117(1/2):99–110

    MathSciNet  Google Scholar 

  93. Miekisz J (2004b) Stochastic stability in spatial three-player games. Phys A 343:175–184

    MathSciNet  Google Scholar 

  94. Miekisz J (2008) Evolutionary game theory and population dynamics. Lect Notes Math 1940:269–316

    MathSciNet  Google Scholar 

  95. Moran PAP (1962) The statistical processes of evolutionary theory. Clarendon Press, Oxford

    MATH  Google Scholar 

  96. Nash J (1951) Non-cooperative games. Ann Math 54:286–299

    MATH  MathSciNet  Google Scholar 

  97. Nash JF (1950) Equilibrium points in n-person games. Proc Natl Acad Sci USA 36:48–49

    MATH  MathSciNet  Google Scholar 

  98. von Neumann J, Morgenstern O (1944) Theory of games and economic behavior. Princeton University Press, Princeton

    MATH  Google Scholar 

  99. Noë R (2001) Biological markets: partner choice as the driving force behind the evolution of mutualisms. In: Noë R, van Hooff JA, Hammerstein P (eds) Economics in nature: social dilemmas, mate choice and biological markets. Cambridge University Press, Cambridge

    Google Scholar 

  100. Noë R, Hammerstein P (1995) Biological markets. Trends Ecol Evol 10(8):336–339

    Google Scholar 

  101. Noë R, van Schaik CP, van Hooff JARAM (1991) The market effect: an explanation for pay-off asymmetries among collaborating animals. Ethology 87:97–118

    Google Scholar 

  102. Nowak MA (2006) Evolutionary dynamics. Harvard University Press, Cambridge MA

    MATH  Google Scholar 

  103. Nowak MA, May RM (1992) Evolutionary games and spatial chaos. Nature 359:826–829

    Google Scholar 

  104. Nowak MA, Sigmund K (2004) Evolutionary dynamics of biological games. Science 303:793–799

    Google Scholar 

  105. Nowak MA, Sasaki A, Taylor C, Fudenberg D (2004) Emergence of cooperation and evolutionary stability in finite populations. Nature 428:646–650

    Google Scholar 

  106. Nowak MA, Tarnita CE, Antal T (2010) Evolutionary dynamics in structured populations. Philos Trans R Soc B 365:19–30

    Google Scholar 

  107. Ohtsuki H, Nowak MA (2006) The replicator equation on graphs. J Theor Biol 243:86–97

    MathSciNet  Google Scholar 

  108. Ohtsuki H, Nowak MA (2008) Evolutionary stability on graphs. J Theor Biol 251:698–707

    MathSciNet  Google Scholar 

  109. Ohtsuki H, Bordalo P, Nowak MA (2007) The one-third law of evolutionary dynamics. J Theor Biol 249:289–295

    MathSciNet  Google Scholar 

  110. Osborne MJ (1996) Darwin, Fisher, and a theory of the evolution of the sex ratio. URL http://www.economics.utoronto.ca/osborne/research/sexratio

  111. Pacheco JM, Santos FC, Souza MO, Skyrms B (2009) Evolutionary dynamics of collective action in n-person stag hunt dilemmas. Proc R Soc B 276:315–321

    Google Scholar 

  112. Page KM, Nowak MA (2002) Unifying evolutionary dynamics. J Theor Biol 219:93–98

    MathSciNet  Google Scholar 

  113. Palm G (1984) Evolutionary stable strategies and game dynamics for n-person games. J Math Biol 19(3):329–334

    MATH  MathSciNet  Google Scholar 

  114. Peña J (2012) Group size diversity in public goods games. Evolution 66:623–636

    Google Scholar 

  115. Peña J, Lehmann L, Nöldeke G (2014) Gains from switching and evolutionary stability in multi-player games. J Theor Biol 346:23–33

    Google Scholar 

  116. Peters LL, Barker JE (1993) Novel inheritance of the murine severe combined anemia and thrombocytopenia (scat) phenotype. Cell 74:135–142

    Google Scholar 

  117. Poulin R, Vickery WL (1995) Cleaning symbiosis as an evolutionary game: to cheat or not to cheat? J Theor Biol 175:63–70

    Google Scholar 

  118. Press WH, Dyson FD (2012) Iterated prisoner’s dilemma contains strategies that dominate any evolutionary opponent. Proc Natl Acad Sci USA 109:10,409–10,413

    Google Scholar 

  119. Riechert SE, Hammerstein P (1983) Game theory in the ecological context. Annu Rev Ecol Syst 14:377–409

    Google Scholar 

  120. Robson AJ, Vega-Redondo F (1996) Efficient equilibrium selection in evolutionary games with random matching. J Econ Theory 70:65–92

    MATH  MathSciNet  Google Scholar 

  121. Rosas A (2010) Evolutionary game theory meets social science: is there a unifying rule for human cooperation? J Theor Biol 264(2):450–456

    MathSciNet  Google Scholar 

  122. Rowe GW (1987) A dynamic game theory model of diploid genetic system. J Theor Biol 129:243–255

    MathSciNet  Google Scholar 

  123. Rowe GW (1988) To each genotype a separate strategy—a dynamic game theory model of a general diploid system. J Theor Biol 134:89–101

    MathSciNet  Google Scholar 

  124. Samuelson PA (1985) Modes of thought in economics and biology. Am Econ Rev 75(2):166–172

    Google Scholar 

  125. Sandholm WH (2010) Population games and evolutionary dynamics. MIT Press, Cambridge

    MATH  Google Scholar 

  126. Santos FC, Pacheco JM, Lenaerts T (2006) Evolutionary dynamics of social dilemmas in structured heterogeneous populations. Proc Natl Acad Sci USA 103:3490–3494

    Google Scholar 

  127. Schuster P, Sigmund K (1983) Replicator dynamics. J Theor Biol 100:533–538

    MathSciNet  Google Scholar 

  128. Schuster P, Sigmund K, Hofbauer J, Gottlieb R, Merz P (1981a) Selfregulation in behaviour in animal societies iii. games between two populations with selfinteractions. Biol Cybern 40:17–25

    MATH  MathSciNet  Google Scholar 

  129. Schuster P, Sigmund K, Hofbauer J, Wolff R (1981b) Selfregulation in behaviour in animal societies ii. games between two populations without selfinteractions. Biol Cybern 40:9–15

    MATH  MathSciNet  Google Scholar 

  130. Schwalbe U, Walker P (2001) Zermelo and the early history of game theory. Games Econ Behav 34(1):123–137

    MATH  MathSciNet  Google Scholar 

  131. Shirakihara K, Tanaka S (1978) Two fish species competition model with nonlinear interactions and equilibrium catches. Res Popul Ecol 20(1):123–140

    Google Scholar 

  132. Sigmund K (1987a) Game dynamics, mixed strategies, and gradient systems. Theor Popul Biol 32(1):114–126

    MATH  MathSciNet  Google Scholar 

  133. Sigmund K (1987b) A maximum principle for frequency dependent selection. Math Biosci 84:189–195

    MATH  MathSciNet  Google Scholar 

  134. Skyrms B (2003) The Stag-Hunt game and the evolution of social structure. Cambridge University Press, Cambridge

    Google Scholar 

  135. Smith TG, Siniff DB, Reichle R, Stone S (1981) Coordinated behavior of killer whales, Orcinus orca, hunting a crabeater seal, Lobodon carcinophagus. Can J Zool 59(6):1185–1189

    Google Scholar 

  136. Souza MO, Pacheco JM, Santos FC (2009) Evolution of cooperation under n-person snowdrift games. J Theor Biol 260:581–588

    MathSciNet  Google Scholar 

  137. Szabó G, Fáth G (2007) Evolutionary games on graphs. Phys Rep 446:97–216

    MathSciNet  Google Scholar 

  138. Tarnita CE, Ohtsuki H, Antal T, Fu F, Nowak MA (2009) Strategy selection in structured populations. J Theor Biol 259:570–581

    MathSciNet  Google Scholar 

  139. Tarnita CE, Wage N, Nowak MA (2011) Multiple strategies in structured populations. Proc Natl Acad Sci USA 108:2334–2337

    Google Scholar 

  140. Taylor C, Fudenberg D, Sasaki A, Nowak MA (2004) Evolutionary game dynamics in finite populations. Bull Math Biol 66:1621–1644

    MathSciNet  Google Scholar 

  141. Taylor PD, Jonker L (1978) Evolutionarily stable strategies and game dynamics. Math Biosci 40:145–156

    MATH  MathSciNet  Google Scholar 

  142. Thomas B, Pohley HJ (1981) ESS-theory for finite populations. Biosystems 13(3):211–221

    Google Scholar 

  143. Traulsen A, Hauert C (2009) Stochastic evolutionary game dynamics. In: Schuster HG (ed) Reviews of nonlinear dynamics and complexity. Wiley-VCH, Weinheim, pp 25–61

    Google Scholar 

  144. Traulsen A, Reed FA (2012) From genes to games: cooperation and cyclic dominance in meiotic drive. J Theor Biol 299:120–125

    MathSciNet  Google Scholar 

  145. Traulsen A, Claussen JC, Hauert C (2005) Coevolutionary dynamics: from finite to infinite populations. Phys Rev Lett 95:238701

    Google Scholar 

  146. Traulsen A, Pacheco JM, Imhof LA (2006) Stochasticity and evolutionary stability. Phys Rev E 74(021):905

    MathSciNet  Google Scholar 

  147. Traulsen A, Pacheco JM, Nowak MA (2007) Pairwise comparison and selection temperature in evolutionary game dynamics. J Theor Biol 246:522–529

    MathSciNet  Google Scholar 

  148. Traulsen A, Claussen JC, Hauert C (2012) Stochastic differential equations for evolutionary dynamics with demographic noise and mutations. Phys Rev E 85:041901

    Google Scholar 

  149. Turner PE, Chao L (1999) Prisoner’s dilemma in an RNA virus. Nature 398:441–443

    Google Scholar 

  150. Turner PE, Chao L (2003) Escape from prisoner’s dilemma in RNA phage Phi6. Am Nat 161(3):497–505

    Google Scholar 

  151. Van Damme E (1994) Evolutionary game theory. Eur Econ Rev 38:847–858

    Google Scholar 

  152. Van Segbroeck S, Santos FC, Lenaerts T, Pacheco JM (2009) Reacting differently to adverse ties promotes cooperation in social networks. Phys Rev Lett 102:058105

    Google Scholar 

  153. van Veelen M, Nowak MA (2012) Multi-player games on the cycle. J Theor Biol 292:116–128

    Google Scholar 

  154. van Veelen M, García J, Rand DG, Nowak MA (2012) Direct reciprocity in structured populations. Proc Natl Acad Sci USA 109:9929–9934

    Google Scholar 

  155. Vickers GT, Cannings C (1988) Patterns of ESS’s I. J Theor Biol 132(4):387–408

    MathSciNet  Google Scholar 

  156. Vickery WL, Poulin R (2010) The evolution of host manipulation by parasites: a game theory analysis. Evol Ecol 24(4):773–788

    Google Scholar 

  157. Volterra V (1928) Variations and fluctuations of the number of individuals in animal species living together. J Cons Int Explor Mer 3(1):3–51

    MathSciNet  Google Scholar 

  158. Wade MJ, Beeman RW (1994) The population dynamics of maternal-effect selfish genes. Genetics 138:1309–1314

    Google Scholar 

  159. Wakeley J (2008) Coalescent theory: an introduction. Roberts and Company Publishers, Greenwood Village

    Google Scholar 

  160. Weichenhan D, Traut W, Kunze B, Winking H (1996) Distortion of mendelian recovery ratio for a mouse hsr is caused by maternal and zygotic effects. Genet Res 68:125–129

    Google Scholar 

  161. Woelfing B, Traulsen A (2009) Stochastic sampling of interaction partners versus deterministic payoff assignment. J Theor Biol 257:689–695

    MathSciNet  Google Scholar 

  162. Wooders M, Cartwright E, Selten R (2006) Behavioral conformity in games with many players. Games Econ Behav 57(2):347–360

    MATH  MathSciNet  Google Scholar 

  163. Wu B, Altrock PM, Wang L, Traulsen A (2010) Universality of weak selection. Phys Rev E 82:046106

    Google Scholar 

  164. Wu B, Gokhale CS, Wang L, Traulsen A (2012) How small are small mutation rates? J Math Biol 64:803–827

    MATH  MathSciNet  Google Scholar 

  165. Wu B, García J, Hauert C, Traulsen A (2013a) Extrapolating weak selection in evolutionary games. PLoS Comput Biol 9:e1003381

    Google Scholar 

  166. Wu B, Traulsen A, Gokhale CS (2013b) Dynamic properties of evolutionary multi-player games in finite populations. Games 4(2):182–199

    MathSciNet  Google Scholar 

  167. Zeeman EC (1980) Population dynamics from game theory. Lect Notes Math 819:471–497

    MathSciNet  Google Scholar 

  168. Zermelo E (1913) Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels. In: Proceedings of the Fifth International Congress of Mathematicians.

  169. Zhou Qian H (2011) Fixation, transient landscape, and diffusion dilemma in stochastic evolutionary game dynamics. Phys Rev E 84:031907

    Google Scholar 

Download references

Acknowledgments

We appreciate generous funding from the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Traulsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gokhale, C.S., Traulsen, A. Evolutionary Multiplayer Games. Dyn Games Appl 4, 468–488 (2014). https://doi.org/10.1007/s13235-014-0106-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13235-014-0106-2

Keywords

Navigation