Skip to main content
Log in

Stackelberg Solutions of Differential Games in the Class of Nonanticipative Strategies

  • Published:
Dynamic Games and Applications Aims and scope Submit manuscript

Abstract

The reverse Stackelberg solution of a two-person nonzero-sum differential game is considered. We assume that the leader plays in the class of nonanticipative strategies. The main result is the description of the Stackelberg solutions via an auxiliary zero-sum differential game. The case when the leader’s strategies depend on the actual control of the follower is compared with the case when the leader uses nonanticipative strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bardi M, Capuzzo-Dolcetta I (1997) Optimal control and viscosity solutions of Hamilton–Jacobi–Bellman equations. Systems & control: foundations & applications. Birkhäuser, Boston, 570 pp

    Book  MATH  Google Scholar 

  2. Başar T, Olsder GJ (1995) Dynamic noncooperative game theory. Academic Press, London, 535 pp

    MATH  Google Scholar 

  3. Bettiol P, Cardaliaguet P, Quincampoix M (2006) Zero-sum state constraint differential game: existence of a value for Bolza problem. Int J Game Theory 34(3):495–527

    Article  MATH  MathSciNet  Google Scholar 

  4. Cardaliaguet P, Quincampoix M, Saint-Pierre P (2000) Pursuit differential games with state constraints. SIAM J Control Optim 39(5):1615–1632

    Article  MathSciNet  Google Scholar 

  5. Ehtamo H, Hämäläinen RP (1989) Incentive strategies and equilibria for dynamic games with delayed information. J Optim Theory Appl 63(3):355–369

    Article  MATH  MathSciNet  Google Scholar 

  6. Elliot RJ, Kalton N (1972) The existence of value for differential games. Memoir of the American Mathematical Society, vol 126. AMS, Providence, iv + 67 pp

    Google Scholar 

  7. Ho Y-C (1983) On incentive problems. Syst Control Lett 3(2):63–68

    Article  MATH  Google Scholar 

  8. Ho Y-C, Luh PB, Muralidharan R (1981) Information structure, Stackelberg games, and incentive controllability. IEEE Trans Autom Control 26(2):454–460

    Article  MATH  MathSciNet  Google Scholar 

  9. Ho Y-C, Luh PB, Olsder PB (1982) A control-theoretic view on incentives. Automatica 18(2):167–179

    Article  MATH  MathSciNet  Google Scholar 

  10. Kleimonov AF (1993) Nonantagonistic positional differential games. Nauka, Ekaterinburg, 185 pp (in Russian)

    Google Scholar 

  11. Krasovskii NN, Subbotin AI (1988) Game-theoretical control problems. Springer, New York, 518 pp

    Book  MATH  Google Scholar 

  12. Martín-Herrán G, Zaccour G (2005) Credibility of incentive equilibrium strategies in linear-state differential games. J Optim Theory Appl 126(2):1–23

    Article  MathSciNet  Google Scholar 

  13. Olsder GJ (2009) Phenomena in inverse Stackelberg games, part 1: static problems. J Optim Theory Appl 143(3):589–600

    Article  MATH  MathSciNet  Google Scholar 

  14. Olsder GJ (2009) Phenomena in inverse Stackelberg games, part 2: dynamic problems. J Optim Theory Appl 143(3):601–618

    Article  MATH  MathSciNet  Google Scholar 

  15. Roxin E (1969) Axiomatic approach in differential games. J Optim Theory Appl 3:153–163

    Article  MATH  MathSciNet  Google Scholar 

  16. Varaiya P, Lin J (1967) Existence of saddle points in differential game. SIAM J Control Optim 7(1):141–157

    Article  Google Scholar 

  17. Zheng YP, Başar T, Cruz JB (1984) Stackelberg strategies and incentives in multiperson deterministic decision problems. IEEE Trans Syst Man Cybern SMC-14:10–24

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yurii Averboukh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Averboukh, Y., Baklanov, A. Stackelberg Solutions of Differential Games in the Class of Nonanticipative Strategies. Dyn Games Appl 4, 1–9 (2014). https://doi.org/10.1007/s13235-013-0077-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13235-013-0077-8

Keywords

Navigation