Skip to main content
Log in

Effect of adjusting charge transport on optoelectronic performances of polymer light-emitting diodes based on SY-PPV

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Unconjugated polymer poly(vinylcarbazole) (PVK) was incorporated into poly[{2,5-di(3′,7′-dimethyloctyloxy)-1,4-phenylene-vinylene}-co-{3-(4′-(3″,7″-dimethyloctyloxy)phenyl)-1,4-phenylenevinylene}-co-{3-(3′-(3′,7′-dimethyloctyloxy) phenyl)-1,4-phenylenevinylene}](SY-PPV) as the emissive layer of PLEDs. The unconjugated backbone of PVK effectively restrains the hole transport property of SY-PPV, which is advantaged to realize better charge-transport balance. Subsequently, the blue-lighting polymer poly[(9,9-dioctyl-2,7-fluorene)-co-(dibenzothiophene -S,S-dioxide)](SO10), which has a deep highest occupied molecular orbital, was employed as the hole-blocking layer to further balance the charge transportation of the emissive device. The SO10 can effectively restrict the hole carrier entering into cathode interface, which is instrumental in avoiding exction quenching on the cathode interface. Through optimizing device structure, a maximum luminous efficiency of 13.52 cd A−1 was realized, which is achieved 120% improvement of that of the pristine SY-PPV as emissive layer. These results indicate that incorporating unconjugated polymer and hole-blocking layer is an efficient method to adjust charge-transport balance of hole-type emissive materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.W. Tang, S.A. VanSlyke, Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913 (1987)

    Article  CAS  Google Scholar 

  2. D.W. Zhang, M. Li, C.F. Chen, Recent advances in circularly polarized electroluminescence based on organic light-emitting diodes. Chem. Soc. Rev. 49, 1331 (2020)

    Article  CAS  PubMed  Google Scholar 

  3. L. Ying, C.-L. Ho, H.B. Wu, Y. Cao, W.-Y. Wong, White polymer light-emitting devices for solid-state lighting: materials, devices, and recent progress. Adv. Mater. 26, 2459 (2014)

    Article  CAS  PubMed  Google Scholar 

  4. J.F. Liang, T. Wu, J. Chen, Pyridine vapor annealing induced reversible switching Emission and enhanced electroluminescent performance of poly (fluorene-co- dibenzothiophene-S, S-dioxide). Electron. Mater. Lett. 20, 183–191 (2024)

    Article  CAS  Google Scholar 

  5. J.M. Sun, P. Cai, X.W. Zhang, A.H. Liang, L.J. Zhang, J.W. Chen, Synthesis, characterization and device application of a novel blue-emitting copolymer incorporating fluorene and benzothiazole backbone units. Opt. Mater. 98, 109443 (2019)

    Article  CAS  Google Scholar 

  6. J. Xu, L. Yu, Z.Z. Sun, T. Li, H.B. Chen, W. Yang, Efficient, stable and high color rendering index white polymer light-emitting diodes by restraining the electron trapping. Org. Electron. 84, 105785 (2020)

    Article  CAS  Google Scholar 

  7. J.F. Liang, T. Wu, J. Chen, Single-layer blending white-light polymer light-emitting diodes via exciplex emission. J. Electron. Mater. 52, 5013–5021 (2023)

    Article  CAS  Google Scholar 

  8. J.F. Liang, L. Ying, F. Huang, Y. Cao, Recent advances in high performance solution processed WOLEDs for solid-state lighting. J. Mater. Chem. C. 4, 10993 (2016)

    Article  CAS  Google Scholar 

  9. L.L. Sun, S.J. Wang, Y.Y. Zheng, W.J. Chen, M.Y. Li, N.N. Yu, Y.H. Wang, J.H. Yang, Y. Xu, N. Sun, B. Liu, X. An, L.B. Bai, H.Y. Liu, W. Huang, Poly(diarylfluorene) deep-blue polymer light-emitting diodes based on submicrometer-scale morphological films induced by trace β-conformation. Macromolecules 55(18), 8084–8094 (2022)

    Article  CAS  Google Scholar 

  10. S.Y. Shao, L.X. Wang, Through-space charge transfer polymers for solution-processed organic light-emitting diodes. Aggregate 1, 45 (2020)

    Article  Google Scholar 

  11. N. Sakai, R. Warren, F.Y. Zhang, S. Nayak, J.L. Liu, S.V. Kesava, Y.H. Lin, H.S. Biswal, X. Lin, C. Grovenor, T. Malinauskas, A. Basu, T.D. Anthopoulos, V. Getautis, A. Kahn, M. Riede, P.K. Nayak, H.J. Snaith, Adduct-based p-doping of organic semiconductors. Nat. Mater. 20(9), 1248–1253 (2021)

    Article  CAS  PubMed  Google Scholar 

  12. R. Wang, H.Y. Xiang, J.W. Chen, Y. Li, Y.H. Zhou, W.C.H. Choy, Z.Y. Fan, H.B. Zeng, Energy regulation in white-light-emitting diodes. ACS Energy Lett. 7, 2173 (2022)

    Article  CAS  Google Scholar 

  13. Z.M. Zhong, Y.W. Ma, H.L. Liu, F. Peng, L. Ying, S.R. Wang, X.G. Li, J.B. Peng, Y. Cao, Improving the performance of blue polymer light-emitting diodes using a hole injection layer with a high work function and nanotexture. ACS Appl. Mater. Interfaces 12, 20750 (2020)

    Article  CAS  PubMed  Google Scholar 

  14. K.Q. He, X.D. Wang, J.T. Yu, H.G. Jiang, G.S. Xie, H. Tan, Y. Liu, D.G. Ma, Y.F. Wang, W.G. Zhu, Synthesis and optoelectronic properties of novel fluorene-bridged dinuclear cyclometalated iridium (III) complex with A–D–A framework in the single-emissive-layer WOLEDs. Org. Electron. 15, 2942 (2014)

    Article  CAS  Google Scholar 

  15. F.L. Bai, C.C. Xu, Y.M. Mo, Z.T. Wang, Synthesis and luminescence of PPV copolymers and oligomers. SPIE 3148, 321–328 (1997)

    CAS  Google Scholar 

  16. F. Peng, W.K. Zhong, Z.M. Zhong, T. Guo, L. Ying, Improving the electroluminescent performance of blue light-emitting polymers by side-chain modification. ACS Appl. Mater. Interfaces 12, 8495 (2020)

    Article  CAS  PubMed  Google Scholar 

  17. K.F. Chen, P. Cai, H.L. Peng, X.G. Xue, Z.M. Wang, L.X. Sun, Ti3C2Tx MXene for organic/perovskite optoelectronic devices. J. Cent. South. Univ. 28, 3935–3958 (2021)

    Article  CAS  Google Scholar 

  18. G. Huseynova, J.-M. Yoo, B. Sung, S.-H. Lee, J. Lee, S.W. Woo, Y.H. Kim, J.-H. Lee, J. Lee, Effect of the hole injection layer conductivity on the performance of polymer light-emitting diodes. Electron. Mater. Lett. 17, 331–339 (2021)

    Article  CAS  Google Scholar 

  19. J. Xu, F. Peng, Z.Z. Sun, L. Yu, W. Yang, Y. Cao, Near-infrared polymer light-emitting diodes based on an inverted device structure. J. Mater. Chem. C. 7, 12114 (2019)

    Article  CAS  Google Scholar 

  20. D.W. Zhang, M. Li, C.F. Chen, Recent advances in circularly polarized electroluminescence based on organic light-emitting diodes. Chem. Soc. Rev. 49(5), 1331–1343 (2020)

    Article  CAS  PubMed  Google Scholar 

  21. X.C. Su, Z.Q. Huang, Z.M. Zhong, F. Peng, T. Guo, L.W. Hu, L. Ying, Circularly polarized deep-blue polymer light emitting diodes induced by a chiral small molecule dopant. Chem. Phys. Lett. 806, 140011 (2022)

    Article  CAS  Google Scholar 

  22. S.Y. Shao, J.Q. Ding, L.X. Wang, New applications of poly (arylene ether)s in organic light-emitting diodes. Chin. Chem. Lett. 27(8), 1201–1208 (2016)

    Article  CAS  Google Scholar 

  23. J. Hu, Q. Li, S.Y. Shao, L.X. Wang, X.B. Jing, F.S. Wang, Single white-emitting polymers with high efficiency, low roll-off, and enhanced device stability by using through-space charge transfer polymer with blue delayed fluorescence as host for yellow phosphor. Adv. Opt. Mater. 8, 1902100 (2020)

    Article  CAS  Google Scholar 

  24. X. Zeng, J. Luo, T. Zhou, T.H. Chen, X. Zhou, K.L. Wu, Y. Zou, G.H. Xie, S.L. Gong, C.L. Yang, Using ring-opening metathesis polymerization of norbornene to construct thermally activated delayed fluorescence polymers: high-efficiency blue polymer light-emitting diodes. Macromolecules 51, 1598 (2018)

    Article  CAS  Google Scholar 

  25. C.F. Liu, X. Liu, W.Y. Lai, W. Huang, Organic light-emitting field-effect transistors: device geometries and fabrication techniques. Adv. Mater. 30(52), 1802466 (2018)

    Article  Google Scholar 

  26. Q.L. Niu, X.D. Pan, X.M. Duan, W.J. Qi, L. Zhang, Y. Xu, W.J. Zeng, R.D. Xia, Y.G. Min, Highly efficient polymer light-emitting devices based on sodium compounds electron injection layer. Display 68, 102018 (2021)

    Article  CAS  Google Scholar 

  27. Q. Wang, Q.S. Tian, Y.L. Zhang, X. Tang, L.S. Liao, Single white-emitting polymers with high efficiency, low roll-off, and enhanced device stability by using through-space charge transfer polymer with blue delayed fluorescence as host for yellow phosphor. J. Mater. Chem. C. 7, 11329 (2019)

    Article  CAS  Google Scholar 

  28. D. Shimoyama, F. Jäkle, Controlling the aggregation and assembly of boron- containing molecular and polymeric materials. Aggregate 3, 149 (2022)

    Article  Google Scholar 

  29. W.F. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P.A. Bobbert, P.W.M. Deleeuw, M.A.J. Michels, Unified description of charge-carrier mobilities in disordered semiconducting polymers. Phys. Rev. Lett. 94(20), 206601 (2005)

    Article  CAS  PubMed  Google Scholar 

  30. S.M. Wang, X.D. Wang, B. Yao, B.H. Zhang, J.Q. Ding, Z.Y. Xie, L.X. Wang, Solution-processed phosphorescent organic light-emitting diodes with ultralow driving voltage and very high power efficiency. Sci. Rep. 5(1), 1–9 (2015)

    Google Scholar 

  31. C.-C. Hsiao, A.-E. Hsiao, S.-A. Chen, Design of hole blocking layer with electron transport channels for high performance polymer light-emitting diodes. Adv. Mater. 20(10), 1982–1988 (2008)

    Article  CAS  Google Scholar 

  32. Y.Y. Li, H.B. Wu, J.H. Zou, L. Ying, W. Yang, Y. Cao, Enhancement of spectral stability and efficiency on blue light-emitters via introducing dibenzothiophene-S, S-dioxide isomers into polyfluorene backbone. Org. Electron. 10(5), 901–909 (2009)

    Article  CAS  Google Scholar 

  33. S.F. Lin, Y. Chen, Polyazomethines based on oxadiazolyl or 1, 2, 4-triazolyl groups: synthesis and hole-buffering application in polymer light-emitting diodes. Polym. Chem. 9(45), 5442–5451 (2018)

    Article  CAS  Google Scholar 

  34. Y. Zhao, L. Duan, D.Q. Zhang, L.D. Hou, J. Qiao, L.D. Wang, Y. Qiu, Small molecular phosphorescent organic light-emitting diodes using a spin-coated hole blocking layer. Appl. Phys. Lett. 100(8), 53 (2012)

    Article  Google Scholar 

  35. Z.T. Liu, L.H. Zhang, X. Gao, L.J. Zhang, Q. Zhang, J.W. Chen, Highly efficient green PLED based on triphenlyaminesilole-carbazole-fluorene copolymers with TPBI as the hole blocking layer. Dyes Pigments 127, 155–160 (2016)

    Article  CAS  Google Scholar 

  36. T.Y. Chu, O.-K. Song, Hole mobility of N, N′-bis (naphthalen-1-yl)-N, N′-bis (phenyl) benzidine investigated by using space-charge-limited currents. Appl. Phys. Lett. 90, 203512 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The author is grateful for financial support from 2023 Guangdong Provincial Ordinary University Characteristic Innovation Projects (2023KTSCX388); Guangdong Basic and Applied Basic Research Fund Guangdong Province and Dongguan City United Fund (2019A1515110813); Scientific Research Funds of QingYuan Polytechnic (QYPT-2022-003).

Author information

Authors and Affiliations

Authors

Contributions

JF Liang designed research, performed research, analyzed data, and wrote the paper.

Corresponding author

Correspondence to Junfei Liang.

Ethics declarations

Competing interest

The authors declare that they have no competing financial interests.

Compliance with ethical standards

The authors certify that there is no conflict of interest with any individual/organization for the present work.

Research data policy and data availability statements

All data included in this study are available upon request by contact with the corresponding author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2752 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J. Effect of adjusting charge transport on optoelectronic performances of polymer light-emitting diodes based on SY-PPV. Macromol. Res. (2024). https://doi.org/10.1007/s13233-024-00268-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13233-024-00268-4

Keywords

Navigation