Skip to main content
Log in

3D printable hydrogel filament with functionalizable moiety for in-situ flow-based sensor

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Understanding microorganisms is a worthy work to gather various biological information that can directly affect human beings. However, most information is detected or measured at ex-situ conditions. In this work, we attempted to fabricate a 3D printable hydrogel-based in-situ detection system. We designed the hydrogel containing azide functionalized polyethylenglycole methacrylate (PEGMA) and fabricated the hydrogel as a 3D structure to prepare flow type detector using a 3D printer. To use hydrogel as a 3D printer filament, we enhanced viscosity via the pre-crosslinking process and added bentonite with Polyethylene glycol diacrylate (PEGDA) crosslinker with a certain proportion. Prepared hydrogel 3D structure could cultivate E.coli in a liquid culture medium. The hydrogel 3D structure has an azide group which is a useful tool to introduce additional chemical functionality via azide–alkyne click reaction. Using this process, we introduced alkyne functionalized 4-(2-pyridylazo) resorcinol (PAR). The PAR clicked hydrogel can be used as flow based sensor platform to detect i.e. various metal ions including Cu, Al, and Co ions in media.

Graphical Abstract

Schematic diagram of final concept of azide-functionalized hydrogel-based in-situ detector

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. M. Hayatsu, K. Tago, M. Saito, J. Soil Sci. Plant Nutr. 54, 33 (2008)

    Article  CAS  Google Scholar 

  2. E.L. Madsen, Curr. Opin. Biotechnol. 22, 456 (2011)

    Article  CAS  PubMed  Google Scholar 

  3. C. Santoro et al., J. Power. Sources 356, 225 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. A. Ortiz, E. Sansinenea, Appl. Microbiol. Biotechnol. 105, 891 (2021)

    Article  CAS  PubMed  Google Scholar 

  5. P. Rodriguez, D. Gonzalez, S.R. Giordano, J. Mol. Catal. B Enzym. 133, 569 (2016)

    Article  Google Scholar 

  6. M. Terzaghi, S. Castiglione, F. Guarino, Appl. Sci. 12, 2578 (2022)

    Article  CAS  Google Scholar 

  7. D. Li et al., Cell Metab. 35, 685 (2023)

    Article  CAS  PubMed  Google Scholar 

  8. L. Zhang et al., Front. Immunol. 12, 686501 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. G. Batani et al., Sci. Rep. 9, 18618 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. T. Eickhorst, R. Tippkötter, Soil Biol. Biochem. 40, 1284 (2008)

    Article  CAS  Google Scholar 

  11. R. Li et al., Proc. Natl. Acad. Sci. U.S.A. 115, 668 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. M. Ferdeș et al., Sustainability 12, 7205 (2020)

    Article  Google Scholar 

  13. T. Takei et al., Process Biochem. 46, 566 (2011)

    Article  CAS  Google Scholar 

  14. T. Zhao et al., Biotechnol. Adv. 49, 108243 (2023)

    Article  Google Scholar 

  15. A.C. Daly et al., Cell 184, 18 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Q. Zhang et al., RSC Adv. 4, 32475 (2014)

    Article  CAS  Google Scholar 

  17. M. Mobaraki et al., Bioprinting 18, e00080 (2020)

    Article  Google Scholar 

  18. R.F. Pereira, P.J. Bártolo, J. Appl. Polym. Sci. (2015). https://doi.org/10.1002/app.42458

    Article  Google Scholar 

  19. Z. Chen et al., Adv. Funct. Mater. 29, 1900971 (2019)

    Article  Google Scholar 

  20. L.Y. Zhou, J. Fu, Y. He, Adv. Funct. Mater. 30, 2000187 (2020)

    Article  CAS  Google Scholar 

  21. M. Stanton, J. Samitier, S. Sanchez, Lab Chip 15, 3111 (2015)

    Article  CAS  PubMed  Google Scholar 

  22. Q. Gu et al., Sci China Life Sci 58, 411 (2015)

    Article  CAS  PubMed  Google Scholar 

  23. Y.-G. Ko, O.H. Kwon, J. Ind. Eng. Chem. 89, 147 (2020)

    Article  CAS  Google Scholar 

  24. K. Na et al., J. Ind. Eng. Chem. 61, 340 (2018)

    Article  CAS  Google Scholar 

  25. D.B. Kolesky et al., Adv. Mater. 26, 3124 (2014)

    Article  CAS  PubMed  Google Scholar 

  26. J.S. Miller et al., Nat. Mater. 11, 768 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. S. Li et al., Appl. Mater. Today 30, 428–445 (2023)

    Google Scholar 

  28. P. Sasmal et al., Microphysiol Syst 2, 9 (2018)

    PubMed  PubMed Central  Google Scholar 

  29. B. Duan et al., J. Biomed. Mater. Res. A 101, 1255 (2013)

    Article  PubMed  Google Scholar 

  30. L.A. Hockaday et al., Biofabrication 4, 035005 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. C. Kucukgul et al., Biotechnol. Bioeng. 112, 811 (2015)

    Article  CAS  PubMed  Google Scholar 

  32. T. Zandrini et al., Trends Biotechnol. 41, 604 (2023)

    Article  CAS  PubMed  Google Scholar 

  33. H. Mao et al., Prog. Nat. Sci. Mater. 30, 618 (2020)

    Article  CAS  Google Scholar 

  34. S. Hong et al., Adv. Mater. 27, 4035 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. H. Kim, K.J. Lee, Polymer (2021). https://doi.org/10.1016/j.polymer.2021.124350

    Article  PubMed  PubMed Central  Google Scholar 

  36. E. Seo et al., Sci. Rep. 9, 18648 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. G. Falcone et al., Int. J. Mol. Sci. 23, 1280 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. L. Pua et al., Int. J. Phys. Model. Geotech 1(32–33), 155–160 (2018)

    Article  Google Scholar 

  39. K. Park, Y. Kim, K.J. Lee, Macromol. Res. 28, 580 (2020)

    Article  CAS  Google Scholar 

  40. F. Karipcin, E. Kabalcilar, Acta Chim. Slov. 54, 242–247 (2007)

    CAS  Google Scholar 

  41. X. Zhou, J. Nie, B. Du, ACS Appl. Mater. Interfaces 7, 21966 (2015)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Research Foundation (NRF) grant funded by the Korea government (MSIT) (Regional Leading Research Center, 2020R1A5A8017671).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong-Myung Kim or Kyung Jin Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 594 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Go, K., Kim, DM. & Lee, K.J. 3D printable hydrogel filament with functionalizable moiety for in-situ flow-based sensor. Macromol. Res. 32, 467–473 (2024). https://doi.org/10.1007/s13233-023-00238-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-023-00238-2

Keywords

Navigation