Abstract
Understanding microorganisms is a worthy work to gather various biological information that can directly affect human beings. However, most information is detected or measured at ex-situ conditions. In this work, we attempted to fabricate a 3D printable hydrogel-based in-situ detection system. We designed the hydrogel containing azide functionalized polyethylenglycole methacrylate (PEGMA) and fabricated the hydrogel as a 3D structure to prepare flow type detector using a 3D printer. To use hydrogel as a 3D printer filament, we enhanced viscosity via the pre-crosslinking process and added bentonite with Polyethylene glycol diacrylate (PEGDA) crosslinker with a certain proportion. Prepared hydrogel 3D structure could cultivate E.coli in a liquid culture medium. The hydrogel 3D structure has an azide group which is a useful tool to introduce additional chemical functionality via azide–alkyne click reaction. Using this process, we introduced alkyne functionalized 4-(2-pyridylazo) resorcinol (PAR). The PAR clicked hydrogel can be used as flow based sensor platform to detect i.e. various metal ions including Cu, Al, and Co ions in media.
Graphical Abstract
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
M. Hayatsu, K. Tago, M. Saito, J. Soil Sci. Plant Nutr. 54, 33 (2008)
E.L. Madsen, Curr. Opin. Biotechnol. 22, 456 (2011)
C. Santoro et al., J. Power. Sources 356, 225 (2017)
A. Ortiz, E. Sansinenea, Appl. Microbiol. Biotechnol. 105, 891 (2021)
P. Rodriguez, D. Gonzalez, S.R. Giordano, J. Mol. Catal. B Enzym. 133, 569 (2016)
M. Terzaghi, S. Castiglione, F. Guarino, Appl. Sci. 12, 2578 (2022)
D. Li et al., Cell Metab. 35, 685 (2023)
L. Zhang et al., Front. Immunol. 12, 686501 (2021)
G. Batani et al., Sci. Rep. 9, 18618 (2019)
T. Eickhorst, R. Tippkötter, Soil Biol. Biochem. 40, 1284 (2008)
R. Li et al., Proc. Natl. Acad. Sci. U.S.A. 115, 668 (2018)
M. Ferdeș et al., Sustainability 12, 7205 (2020)
T. Takei et al., Process Biochem. 46, 566 (2011)
T. Zhao et al., Biotechnol. Adv. 49, 108243 (2023)
A.C. Daly et al., Cell 184, 18 (2021)
Q. Zhang et al., RSC Adv. 4, 32475 (2014)
M. Mobaraki et al., Bioprinting 18, e00080 (2020)
R.F. Pereira, P.J. Bártolo, J. Appl. Polym. Sci. (2015). https://doi.org/10.1002/app.42458
Z. Chen et al., Adv. Funct. Mater. 29, 1900971 (2019)
L.Y. Zhou, J. Fu, Y. He, Adv. Funct. Mater. 30, 2000187 (2020)
M. Stanton, J. Samitier, S. Sanchez, Lab Chip 15, 3111 (2015)
Q. Gu et al., Sci China Life Sci 58, 411 (2015)
Y.-G. Ko, O.H. Kwon, J. Ind. Eng. Chem. 89, 147 (2020)
K. Na et al., J. Ind. Eng. Chem. 61, 340 (2018)
D.B. Kolesky et al., Adv. Mater. 26, 3124 (2014)
J.S. Miller et al., Nat. Mater. 11, 768 (2012)
S. Li et al., Appl. Mater. Today 30, 428–445 (2023)
P. Sasmal et al., Microphysiol Syst 2, 9 (2018)
B. Duan et al., J. Biomed. Mater. Res. A 101, 1255 (2013)
L.A. Hockaday et al., Biofabrication 4, 035005 (2012)
C. Kucukgul et al., Biotechnol. Bioeng. 112, 811 (2015)
T. Zandrini et al., Trends Biotechnol. 41, 604 (2023)
H. Mao et al., Prog. Nat. Sci. Mater. 30, 618 (2020)
S. Hong et al., Adv. Mater. 27, 4035 (2015)
H. Kim, K.J. Lee, Polymer (2021). https://doi.org/10.1016/j.polymer.2021.124350
E. Seo et al., Sci. Rep. 9, 18648 (2019)
G. Falcone et al., Int. J. Mol. Sci. 23, 1280 (2022)
L. Pua et al., Int. J. Phys. Model. Geotech 1(32–33), 155–160 (2018)
K. Park, Y. Kim, K.J. Lee, Macromol. Res. 28, 580 (2020)
F. Karipcin, E. Kabalcilar, Acta Chim. Slov. 54, 242–247 (2007)
X. Zhou, J. Nie, B. Du, ACS Appl. Mater. Interfaces 7, 21966 (2015)
Acknowledgements
This work was supported by National Research Foundation (NRF) grant funded by the Korea government (MSIT) (Regional Leading Research Center, 2020R1A5A8017671).
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Go, K., Kim, DM. & Lee, K.J. 3D printable hydrogel filament with functionalizable moiety for in-situ flow-based sensor. Macromol. Res. 32, 467–473 (2024). https://doi.org/10.1007/s13233-023-00238-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13233-023-00238-2