Skip to main content
Log in

A study on the effects of thermal treatments and gamma rays irradiation on expired “Helixone” membranes

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Polysulfones (PSF) are specialty thermoplastics that are commonly used in dialysis membranes production. In the present work, the effects of γ-rays irradiation and thermal treatments on the expired PSF dialysis membranes (Helixone) were investigated with the purpose of reusing them. Irradiation below 35 kGy or thermal treatments at temperatures below 150 °C were proven not to affect the essential characteristics of the membranes, but chemical as well as morphological changes start to appear at a dose of 35 kGy as well as at a treatment temperature above 150 °C. Structural analysis of the membranes before and after treatments indicated that two mechanisms could be suggested for membranes properties deterioration. Oxidation of the polymer was the main mechanism on irradiation treatment, while polyvinylpyrrolidone (PVP) degradation and elution were more pronounced in thermal treatments. Both type of treatments at moderate conditions improved the hydrophilicity and water uptake of the membranes but these properties progressively deteriorate at irradiation dose of 35 kGy and at treatment temperature above 150 °C. A method of reactivating expired Helixone was suggested by reloading of PVP followed by treatments in buffer solution at pH = 7.2 for 12 h. This was shown to decrease the PVP elution by 10% in comparison with the un-treated membrane.

Graphical abstract

The polysulfone (PSF) dialyzer will expire after the recommended date stated by the manufacturer due to elution of poly (vinylpyrrolidone) (PVP). Loading the PSF membrane with a fresh PVP solution followed by curing by equilibration in buffer solution at pH=7.2, decreased the PVP elution by 10% in comparison with the un-treated membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C. Ronco, W.R. Clark, Nature 14, 394 (2018). https://doi.org/10.1038/s41581-018-0002-x

    Article  CAS  Google Scholar 

  2. I.M.R. Fattah, Z.A. Farhan, K.J. Kontoleon, E. Kianfar, S.K. Hadrawi, Macromol. Res. (2023). https://doi.org/10.1007/s13233-023-00113-0

    Article  Google Scholar 

  3. Y.-A. Chen, S.-M. Ou, C.-C. Lin, Membranes 12, 152 (2022). https://doi.org/10.3390/membranes12020152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. A.S. Khanna, Natural Degradation on Plastics and Corrosion of Plastics in Industrial Environment in Reference Module in Materials Science and Materials Engineering (Elsevier Inc., 2021).

  5. H. Wang, T. Yu, C. Zhao, Q. Du, Fibers Polym. 10, 1 (2009). https://doi.org/10.1007/s12221-009-0001-4

    Article  CAS  Google Scholar 

  6. I.G. Wenten, P.T.P. Aryanti, K. Khoiruddin, A.N. Hakim, N.F. Himma, J. Membr. Sci. Res. 2, 78 (2016). https://doi.org/10.22079/JMSR.2016.19155

    Article  Google Scholar 

  7. B.-H. Su, Y. Shi, P. Fu, Y. Tao, S. Nie, C.-S. Zhao, J. Appl. Polym. Sci. 124, E91 (2012). https://doi.org/10.1002/app.35589

    Article  CAS  Google Scholar 

  8. J. Murakami, I. Kaneko, N. Kimata, M. Mineshima, T. Akiba, Ren. Replacement Ther. 2, 36 (2016). https://doi.org/10.1186/s41100-016-0047-x

    Article  Google Scholar 

  9. A.M. Zawada, P. Melchior, A. Erlenkötter, D. Delinski, M. Stauss-Grabo, J.P. Kennedy, Hemodial. Int. 25, 498 (2021). https://doi.org/10.1111/hdi.12939

    Article  PubMed  Google Scholar 

  10. C. Woiterski, S. Jäger, S. Dröschel, ASAIO J. (2022). https://doi.org/10.1097/MAT.0000000000001751

    Article  PubMed  Google Scholar 

  11. M. Matsuda, T. Yakushiji, K. Sakai, Surf. Interface Anal. 43, 976 (2011). https://doi.org/10.1002/sia.3680

    Article  CAS  Google Scholar 

  12. J.-O. Jeong, J.-S. Park, Y.-A. Kim, S.-J. Yang, S.-I. Jeong, J.-Y. Lee, Y.-M. Lim, Polymers (Basel) 12, 111 (2020). https://doi.org/10.3390/polym12010111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. K. Namekawa, A. Kaneko, K. Sakai, S. Kunikata, M. Matsuda, J. Artif. Organs 14, 52 (2011). https://doi.org/10.1007/s10047-011-0552-1

    Article  CAS  PubMed  Google Scholar 

  14. A.G. Al-Lafi, J. Al-Abdullah, Y. Amin, T. Alnama, Y. Aljbai, R. Hasan, G. Alsayes, J. Radioanal. Nucl. Chem. 321, 463 (2019). https://doi.org/10.1007/s10967-019-06630-6

    Article  CAS  Google Scholar 

  15. A.G. Al-Lafi, J.A. Abdullah, T. Alnama, Y. Amin, J. Polym. Environ. 25, 391 (2017). https://doi.org/10.1007/s10924-016-0821-4

    Article  CAS  Google Scholar 

  16. A.G. Al-Lafi, J.A. Abdullah, R. Hasan, Y. Amin, T. Alnama, J. Radioanal. Nucl. Chem. 319, 39 (2019). https://doi.org/10.1007/s10967-018-6245-y

    Article  CAS  Google Scholar 

  17. A.G. Al-Lafi, R. Hasan, N. Al-Kafri, Macromol. Res. 27, 1239 (2019). https://doi.org/10.1007/s13233-019-7166-5

    Article  CAS  Google Scholar 

  18. A. Bedar, R.K. Lenka, N.K. Goel, S. Kumar, R.D. Jain, B.G. Singh, P.K. Tewari, R.C. Bindal, S. Kar, Mater. Adv. 1, 1220 (2020). https://doi.org/10.1039/D0MA00169D

    Article  CAS  Google Scholar 

  19. K. Murakami and H. Kudo, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 265, 125 (2007). https://doi.org/10.1016/j.nimb.2007.08.037

  20. Fresenius Medical Care, https://www.freseniusmedicalcare.com/en/healthcare-professionals/hemodialysis/dialyzers/fx-high-and-low-flux-dialyzers. Accessed Mar 2023

  21. S.L. Hanna, D.X. Rademacher, D.J. Hanson, T. Islamoglu, A.K. Olszewski, T.M. Nenoff, O.K. Farha, Ind. Eng. Chem. Res. 59, 7520 (2020). https://doi.org/10.1021/acs.iecr.9b06820

    Article  CAS  Google Scholar 

  22. S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60, 309 (1938). https://doi.org/10.1021/ja01269a023

    Article  CAS  Google Scholar 

  23. L. Chen, J. Ma, Y. Huang, M. Dai, X. Li, Limnol. Oceanogr. Methods 13, 303 (2015). https://doi.org/10.1002/lom3.10026

    Article  CAS  Google Scholar 

  24. N.J. Langenfeld, L.E. Payne, B. Bugbee, PLoS ONE 16, e0259760 (2021). https://doi.org/10.1371/journal.pone.0259760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. J. Al-Abdullah, A.G. Al-Lafi, Y. Amin, T. Alnama, Appl. Radiat. Isot. 136, 73 (2018). https://doi.org/10.1016/j.apradiso.2018.02.013

    Article  CAS  Google Scholar 

  26. A.G. Al-Lafi, J.N. Hay, J. Appl. Polym. Sci. 128, 3000 (2013). https://doi.org/10.1002/app.38367

    Article  CAS  Google Scholar 

  27. S. Belfer, R. Fainchtain, Y. Purinson, O. Kedem, J. Membr. Sci. 172, 113 (2000). https://doi.org/10.1016/S0376-7388(00)00316-1

    Article  CAS  Google Scholar 

  28. M. Fontyn, K. Riet, B. Bijsterbosch, Colloids Surf. 54, 331 (1991). https://doi.org/10.1016/0166-6622(91)80072-V

    Article  CAS  Google Scholar 

  29. M. Oldani, G. Schock, J. Membr. Sci. 43, 243 (1989). https://doi.org/10.1016/S0376-7388(00)85101-7

    Article  CAS  Google Scholar 

  30. T. Miyano, T. Matsuura, D.J. Carlsson, S. Sourirajan, J. Appl. Polym. Sci. 41, 407 (1990). https://doi.org/10.1002/app.1990.070410132

    Article  CAS  Google Scholar 

  31. B.J. Cha, J.M. Yang, Macromol. Res. 14, 596 (2006). https://doi.org/10.1007/BF03218730

    Article  CAS  Google Scholar 

  32. L.K. Mireles, M.-R. Wu, N. Saadeh, L.H. Yahia, E. Sacher, ACS Omega 5, 30461–30467 (2020). https://doi.org/10.1021/acsomega.0c04010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. D. Shin, A.F. Nugraha, F. Wijaya, S. Lee, E. Kim, J. Choi, H.-J. Kim, B. Bae, RSC Adv. 9, 21106 (2019). https://doi.org/10.1039/c9ra03888d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. M.J. Martinez-Morlanes, C.D.L. Torre-Gamarra, M.T. Pérez-Prior, S. Lara-Benito, C.D. Rio, A. Várez, B. Levenfeld, Polymers 13, 2030 (2021). https://doi.org/10.3390/polym13122030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. B. Abebe, H.C.A. Murthy, E. Amare, J. Encapsul. Adsorpt. Sci. 8, 225 (2018). https://doi.org/10.4236/jeas.2018.84012

    Article  CAS  Google Scholar 

  36. H. Westphalen, S. Saadati, U. Eduok, A. Abdelrasoul, A. Shoker, P. Choi, H. Doan, F. Ein-Mozaffari, Sci. Rep. 10, 14808 (2020). https://doi.org/10.1038/s41598-020-71755-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. G. Gavioli, M. Gennari, S. Bruns, Contrib. Nephrol. 137, 78 (2002). https://doi.org/10.1159/000060233

    Article  Google Scholar 

  38. D.J.T. Hill, D.A. Lewis, J.H. O’Donnell, A.K. Whittaker, Polym. Adv. Technol. 9, 45 (1998)

    Article  CAS  Google Scholar 

  39. M.I. Loría-Bastarrachea, W. Herrera-Kao, J.V. Cauich-Rodríguez, J.M. Cervantes-Uc, H. Vázquez-Torres, A. Ávila-Ortega, J. Therm. Anal. Calorim. 104, 737 (2011). https://doi.org/10.1007/s10973-010-1061-9

    Article  CAS  Google Scholar 

  40. A.G. Al-Lafi, J.N. Hay, D.J. Parker, J. Appl. Polym. Sci. 132, 41999 (2015). https://doi.org/10.1002/app.41999

    Article  CAS  Google Scholar 

  41. L.H. Perng, J. Polym. Sci. Part A Polym. Chem., 38, 583 (2000). doi: https://doi.org/10.1002/(SICI)1099-0518(20000201)38:3<583::AID-POLA23>3.0.CO;2-6

  42. M. Brzezińska, E. Szubiakiewicz, M. Jędrzejczyk, Mater. Today Commun. 26, 101706 (2021). https://doi.org/10.1016/j.mtcomm.2020.101706

    Article  CAS  Google Scholar 

  43. R.B. Moore, N.J. Kauffman, Anal. Biochem. 33, 263 (1970). https://doi.org/10.1016/0003-2697(70)90296-4

    Article  CAS  PubMed  Google Scholar 

  44. M. Kurakula, G.S.N.K. Rao, J. Drug Deliv. Sci. Technol. 60, 102046 (2020). https://doi.org/10.1016/j.jddst.2020.102046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. I Othman, the DG of the AEC, and prof. A. W. Allaf, the head of the chemistry department, for their support and engorgements. Thanks are also due to Dr. Nizar M. Zuhair Ghazal, the Manager of Othman Charitable Clinic in cooperation with Syrian Arab Red Crescent for kindly providing Helixone membranes. The technical support of Miss. Ghina Alssayes, Miss. A. Obied, Mr. H. Allham, Mr. R. Alshater and Mr. M. N. Alkafri are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Ghaffar Al Lafi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Lafi, A.G., Dada, H. & Harmalani, H. A study on the effects of thermal treatments and gamma rays irradiation on expired “Helixone” membranes. Macromol. Res. 31, 851–862 (2023). https://doi.org/10.1007/s13233-023-00175-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-023-00175-0

Keywords

Navigation