Skip to main content
Log in

Polythiourethane composite film with high transparency, high refractive index and low dispersion containing ZnS nanoparticle via thiol-ene click chemistry

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

In recent years, high refractive index polythiourethane materials have attracted increasing attention. In this study, the soft segment part of conventional polyurethane was replaced by ethylenedithiol, and a series of nanocomposite films containing Mercaptoethanol (ME) capped ZnS NPs were prepared by UV curing after the synthesis of the bifunctional linear prepolymer with hydroxyethyl acrylate as capping agent and trifunctional prepolymer with trimethylolpropane triacrylate as sulfhydrylate capping. ZnS NPs were well dispersed in the resin system, and the transmittance of the film decreased with the increase of ZnS content, but it did not float much and still has 80% transmittance at 40%. The addition of ZnS had a significant improvement on the refractive index. The RI of the system without the addition of particles was less than 1.5, the system with 40% was greater than 1.6. It was worth noting that the Abbe number was almost greater than 30, which was in the category of low dispersion.

Graphical abstract

Preparation of highly refractive polythiourethane-ZnS composite film by “click” chemical reaction

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. T. Higashihara, M. Ueda, Recent progress in high refractive index polymers. Macromolecules 48(7), 1915–29 (2015). https://doi.org/10.1021/ma502569r

    Article  CAS  Google Scholar 

  2. P.K. Maji, A.K. Bhowmick, Influence of number of functional groups of hyperbranched polyol on cure kinetics and physical properties of polyurethanes. J. Polym. Sci. A Polym. Chem. 47, 731–45 (2009). https://doi.org/10.1002/pola.23185

    Article  CAS  Google Scholar 

  3. G. Kasi, K. Viswanathan, K. Sadeghi, J. Seo, Optical, thermal, and structural properties of polyurethane in Mg-doped zinc oxide nanoparticles for antibacterial activity. Progress Organ. Coat. 133, 309–15 (2019). https://doi.org/10.1016/j.porgcoat.2019.04.066

    Article  CAS  Google Scholar 

  4. B. Merillas, J. Martín-de León, F. Villafañe, M.Á. Rodríguez-Pérez, Optical properties of polyisocyanurate-polyurethane aerogels: study of the scattering mechanisms. Nanomaterials 12(9), 1522 (2022). https://doi.org/10.3390/nano12091522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yu.Y. Hong, Z. Xiu Mei, D. Li Jie, Z. Ming Yao, G.A.O. Guang Hui, Xuan Z. Hui, Environmental pH-responsive fluorescent PEG-polyurethane for potential optical imaging. J. Appl. Polym. Sci. 129(2), 846–52 (2013)

    Article  Google Scholar 

  6. J.Y. Kwon, B.G. Kim, J.Y. Do, J.-J. Ju, S.K. Park, Polarizing group attached acrylates and polymers viewing high refractive index. Macromol. Res. 15(6), 533–40 (2007). https://doi.org/10.1007/BF03218827

    Article  CAS  Google Scholar 

  7. T.S. Kleine, N.A. Nguyen, L.E. Anderson, S. Namnabat, E.A. LaVilla, S.A. Showghi et al., High refractive index copolymers with improved thermomechanical properties via the inverse vulcanization of sulfur and 1,3,5-triisopropenylbenzene. ACS Macro Lett. 5(10), 1152–6 (2016). https://doi.org/10.1021/acsmacrolett.6b00602

    Article  CAS  PubMed  Google Scholar 

  8. J. Liu, M. Ueda, High refractive index polymers: fundamental research and practical applications. J. Mater. Chem. (2009). https://doi.org/10.1039/b909690f

    Article  Google Scholar 

  9. K. Nakabayashi, T. Imai, M.-C. Fu, S. Ando, T. Higashihara, M. Ueda, Synthesis and characterization of poly(phenylene thioether)s containing pyrimidine units exhibiting high transparency, high refractive indices, and low birefringence. J. Mater. Chem. C 3(27), 7081–7 (2015). https://doi.org/10.1039/C5TC00886G

    Article  CAS  Google Scholar 

  10. N.H. You, Y. Nakamura, Y. Suzuki, T. Higashihara, S. Ando, M. Ueda, Synthesis of Highly Refractive Polyimides Derived from 3,6-Bis(4-aminophenylenesulfanyl)pyridazine and 4,6-Bis(4-aminophenylenesulfanyl)pyrimidine. J. Polym. Sci. Pol. Chem. 47(19), 4886–94 (2009). https://doi.org/10.1002/pola.23538

    Article  CAS  Google Scholar 

  11. G. Zhang, H.-h Ren, D.-s Li, S.-r Long, J. Yang, Synthesis of highly refractive and transparent poly(arylene sulfide sulfone) based on 4,6-dichloropyrimidine and 3,6-dichloropyridazine. Polymer 54(2), 601–6 (2013). https://doi.org/10.1016/j.polymer.2012.12.008

    Article  CAS  Google Scholar 

  12. W.J. Chung, J.J. Griebel, E.T. Kim, H. Yoon, A.G. Simmonds, H.J. Ji et al., The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat. Chem. 5(6), 518–24 (2013). https://doi.org/10.1038/nchem.1624

    Article  CAS  PubMed  Google Scholar 

  13. J.J. Griebel, N.A. Nguyen, S. Namnabat, L.E. Anderson, R.S. Glass, R.A. Norwood et al., Dynamic covalent polymers via inverse vulcanization of elemental sulfur for healable infrared optical materials. ACS Macro Lett. 4(9), 862–6 (2015). https://doi.org/10.1021/acsmacrolett.5b00502

    Article  CAS  PubMed  Google Scholar 

  14. J. Li, J.J. Richardson, H. Ejima, Synthesis of dithiocatechol-pendant polymers. J. Am. Chem. Soc. 144(6), 2450–4 (2022). https://doi.org/10.1021/jacs.1c11479

    Article  CAS  PubMed  Google Scholar 

  15. D.H. Kim, W. Jang, K. Choi, J.S. Choi, J. Pyun, J. Lim et al., One-step vapor-phase synthesis of transparent high refractive index sulfur-containing polymers. Sci. Adv. (2020). https://doi.org/10.1126/sciadv.abb5320

    Article  PubMed  PubMed Central  Google Scholar 

  16. J. Lee, H. Yeo, M. Goh, B.-C. Ku, H. Sohn, H.-J. Kim et al., Synthesis and characterization of poly(cyclohexylthioacrylate) (PCTA) with high refractive index and low birefringence for optical applications. Macromol. Res. 23(10), 960–4 (2015). https://doi.org/10.1007/s13233-015-3128-8

    Article  CAS  Google Scholar 

  17. H.C. Kolb, M.G. Finn, K.B. Sharpless, Click chemistry: Diverse chemical function from a few good reactions. Angewandte Chemie-Int. Edn. 40(11), 2004 (2001). https://doi.org/10.1002/1521-3773(20010601)40:11%3c2004::Aid-anie2004%3e3.0.Co;2-5

    Article  CAS  Google Scholar 

  18. J. Shin, H. Matsushima, J.W. Chan, C.E. Hoyle, Segmented polythiourethane elastomers through sequential Thiol-Ene and Thiol-isocyanate reactions. Macromolecules 42(9), 3294–301 (2009). https://doi.org/10.1021/ma8026386

    Article  CAS  Google Scholar 

  19. Hoff EA, Abel BA, Tretbar CA, McCormick CL, Patton DL. RAFT of blocked isocyanate methacrylates and pendent group modification by thiol-isocyanate reactions. Abstracts of Papers of the American Chemical Society. 2014;248.

  20. Hoff EA, Tretbar CA, Patton DL. Post-polymerization modification of blocked isocyanate functional polymers by thiol-isocyanate reactions. Abstracts of Papers of the American Chemical Society. 2014;247.

  21. J.J. Tan, C.M. Li, H. Li, H. Zhang, J.W. Gu, B.L. Zhang et al., Water-borne thiol-isocyanate click chemistry in microfluidics: rapid and energy-efficient preparation of uniform particles. Polym. Chem. 6(24), 4366–73 (2015). https://doi.org/10.1039/c5py00412h

    Article  CAS  Google Scholar 

  22. X.J. Zhang, S. Malhotra, M. Molina, R. Haag, Micro- and nanogels with labile crosslinks—from synthesis to biomedical applications. Chem. Soc. Rev. 44(7), 1948–73 (2015). https://doi.org/10.1039/c4cs00341a

    Article  CAS  PubMed  Google Scholar 

  23. Y. Zou, L. Zhang, L. Yang, F. Zhu, M.M. Ding, F. Lin et al., “Click” chemistry in polymeric scaffolds: bioactive materials for tissue engineering. J. Controll. Releas. 273, 160–79 (2018). https://doi.org/10.1016/j.jconrel.2018.01.023

    Article  CAS  Google Scholar 

  24. C. Luo, J. Zuo, F. Wang, Y. Yuan, F. Lin, J. Zhao, Preparation and properties of halogen-free flame retardant and high refractive index optical resin via click chemistry. Macromol. Res. 26(4), 346–52 (2018). https://doi.org/10.1007/s13233-018-6045-8

    Article  CAS  Google Scholar 

  25. Y. Jia, B. Shi, J. Jin, J. Li, High refractive index polythiourethane networks with high mechanical property via thiol-isocyanate click reaction. Polymer 180, 121746 (2019). https://doi.org/10.1016/j.polymer.2019.121746

    Article  CAS  Google Scholar 

  26. C.E. Hoyle, C.N. Bowman, Thiol-Ene click chemistry. Angewandte Chemie-Int. Edn. 49(9), 1540–73 (2010). https://doi.org/10.1002/anie.200903924

    Article  CAS  Google Scholar 

  27. C.E. Hoyle, A.B. Lowe, C.N. Bowman, Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis. Chem. Soc. Rev. 39(4), 1355–87 (2010). https://doi.org/10.1039/b901979k

    Article  CAS  PubMed  Google Scholar 

  28. Y.H. Xu, X.Q. Xiong, L. Cai, Z.K. Tang, Z.J. Ye, Thiol-Ene click chemistry. Progress Chem. 24(2–3), 385–94 (2012)

    CAS  Google Scholar 

  29. X.Y. Chen, L.X. Fang, J.J. Wang, F.K. He, X.R. Chen, Y.Q. Wang et al., Intrinsic high refractive index siloxane-sulfide polymer networks having high thermostability and transmittance via thiol-ene cross-linking reaction. Macromolecules 51(19), 7567–73 (2018). https://doi.org/10.1021/acs.macromol.8b01586

    Article  CAS  Google Scholar 

  30. S. Iino, S. Sobu, K. Nakabayashi, S. Samitsu, H. Mori, Highly transparent and photopatternable spirobifluorene-based polythioethers with high refractive indices via thiol-ene click chemistry. Polymer 224, 123725 (2021). https://doi.org/10.1016/j.polymer.2021.123725

    Article  CAS  Google Scholar 

  31. S. Mavila, J. Sinha, Y. Hu, M. Podgorski, P.K. Shah, C.N. Bowman, High refractive index photopolymers by Thiol-Yne “Click” polymerization. ACS Appl. Mater. Interfaces 13(13), 15647–58 (2021). https://doi.org/10.1021/acsami.1c00831

    Article  CAS  PubMed  Google Scholar 

  32. C.C. McClain, C.G. Brown, J. Flowers, V.Q. Nguyen, D.A. Boyd, Optical properties of photopolymerized thiol-ene polymers fabricated using various multivinyl monomers. Ind. Eng. Chem. Res. 57(27), 8902–6 (2018). https://doi.org/10.1021/acs.iecr.8b00856

    Article  CAS  Google Scholar 

  33. K.H. Haas, Hybrid inorganic-organic polymers based on organically modified Si-alkoxides. Adv. Eng. Mater. 2(9), 571–82 (2000). https://doi.org/10.1002/1527-2648(200009)2:9%3c571::Aid-adem571%3e3.3.Co;2-d

    Article  CAS  Google Scholar 

  34. M.K. Jeong, W.T. Choi, B.H. Ahn, Y.S. Gal, K.T. Lim, High refractive index organic/inorganic hybrid films prepared by carbazole phenoxy based copolymers and titanium alkoxide. Mol. Cryst. Liquid Cryst. 686(1), 45–54 (2019). https://doi.org/10.1080/15421406.2019.1648035

    Article  CAS  Google Scholar 

  35. C.L. Lu, B. Yang, High refractive index organic-inorganic nanocomposites: design, synthesis and application. J. Mater. Chem. 19(19), 2884–901 (2009). https://doi.org/10.1039/b816254a

    Article  CAS  Google Scholar 

  36. J.E. Mark, Some novel polymeric nanocomposites. Acc. Chem. Res. 39(12), 881–8 (2006). https://doi.org/10.1021/ar040062k

    Article  CAS  PubMed  Google Scholar 

  37. T. Vijayakanth, D.J. Liptrot, E. Gazit, R. Boomishankar, C.R. Bowen, Recent advances in organic and organic-inorganic hybrid materials for piezoelectric mechanical energy harvesting. Adv. Funct. Mater. 32(17), 2109492 (2022). https://doi.org/10.1002/adfm.202109492

    Article  CAS  Google Scholar 

  38. F.A. Yihun, S. Ifuku, H. Saimoto, H. Izawa, M. Morimoto, Highly transparent and flexible surface modified chitin nanofibers reinforced poly (methyl methacrylate) nanocomposites: mechanical, thermal and optical studies. Polymer 197, 122497 (2020). https://doi.org/10.1016/j.polymer.2020.122497

    Article  CAS  Google Scholar 

  39. Y. Xia, C. Zhang, J.-X. Wang, D. Wang, X.-F. Zeng, J.-F. Chen, Synthesis of transparent aqueous ZrO2 nanodispersion with a controllable crystalline phase without modification for a high-refractive-index nanocomposite film. Langmuir 34(23), 6806–13 (2018). https://doi.org/10.1021/acs.langmuir.8b00160

    Article  CAS  PubMed  Google Scholar 

  40. K.-I. Mimura, K. Kato, High refractive index and dielectric properties of BaTiO(3)nanocube/polymer composite films. J. Nanopart. Res. (2020). https://doi.org/10.1007/s11051-020-04971-y

    Article  Google Scholar 

  41. D. Zhao, S.-X. Shan, M. Zhang, X.-A. Zhang, S.-L. Jiang, Y.-F. Lyu, Preparation of titanium-silphenylene-siloxane hybrid polymers with high refractive index, transmittance, and thermal stability. Chin. J. Polym. Sci. 38(9), 973–82 (2020). https://doi.org/10.1007/s10118-020-2398-6

    Article  CAS  Google Scholar 

  42. S. De, G. De, In situ generation of Au nanoparticles in UV-curable refractive index controlled SiO2-TiO2-PEO hybrid films. J. Phys. Chem. C. 112(28), 10378–84 (2008). https://doi.org/10.1021/jp801625u

    Article  CAS  Google Scholar 

  43. C. Guan, C.L. Lu, Y.F. Liu, B. Yang, Preparation and characterization of high refractive index thin films of TiO2/epoxy resin nanocomposites. J. Appl. Polym. Sci. 102(2), 1631–6 (2006). https://doi.org/10.1002/app.23947

    Article  CAS  Google Scholar 

  44. C.L. Lu, Z.C. Cui, C. Guan, J.Q. Guan, B. Yang, J.C. Shen, Research on preparation, structure and properties of TiO2/polythiourethane hybrid optical films with high refractive index. Macromol. Mater. Eng. 288(9), 717–23 (2003). https://doi.org/10.1002/mame.200300067

    Article  CAS  Google Scholar 

  45. S.D. Devasangeeth, G.L. Balaji, R. Lakshmipathy, Synthesis of surface-functionalized ZnS nanoparticles and its potential application as methylene blue adsorbent. Desalin. Water Treat. 108, 353–61 (2018). https://doi.org/10.5004/dwt.2018.21980

    Article  CAS  Google Scholar 

  46. A.M. El-naggar, Z.K. Heiba, A.M. Kamal, Y. Altowairqi, M.B. Mohamed, Enhancing the linear and nonlinear optical properties by ZnS/V-doped polyvinyl alcohol/carboxymethyl cellulose/polyethylene glycol polymeric nanocomposites for optoelectronic applications. J. Mater. Sci.-Mater. Electron. (2022). https://doi.org/10.1007/s10854-022-09217-2

    Article  Google Scholar 

  47. X.X. Li, J.K. Xu, A simple synthesis of higher refractive index polymeric nanocomposite containing the pendant ZnS nanocrystals capping different amount of mercaptoethanol. J. Nanomater. 2020, 1–13 (2020). https://doi.org/10.1155/2020/7350367

    Article  CAS  Google Scholar 

  48. C.L. Lu, Z.C. Cui, Z. Li, B. Yang, J.C. Shen, High refractive index thin films of ZnS/polythiourethane nanocomposites. J. Mater. Chem. 13(3), 526–30 (2003). https://doi.org/10.1039/b208850a

    Article  CAS  Google Scholar 

  49. Sheng WC, Tan J, Wu P, Chen Q, Zhou ZP, editors. Synthesis and optical properties of ZnS nanoparticles using multi-mercaptan-terminated thio ether as surface modifier. 2nd International Congress on Advanced Materials (ICAM); 2013 May 16–19; Jiangsu Univ, Zhejiang, PEOPLES R CHINA2014.

  50. Y.B. Zhao, F. Wang, Q. Fu, W.F. Shi, Synthesis and characterization of ZnS/hyperbranched polyester nanocomposite and its optical properties. Polymer 48(10), 2853–9 (2007). https://doi.org/10.1016/j.polymer.2007.03.054

    Article  CAS  Google Scholar 

  51. J. Nanda, S. Sapra, D.D. Sarma, N. Chandrasekharan, G. Hodes, Size-selected zinc sulfide nanocrystallites: synthesis, structure, and optical studies. Chem. Mater. 12(4), 1018–24 (2000). https://doi.org/10.1021/cm990583f

    Article  CAS  Google Scholar 

  52. P. Wang, H. Xiao, C. Duan, B. Wen, Z. Li, Sulfathiazole derivative with phosphaphenanthrene group: Synthesis, characterization and its high flame-retardant activity on epoxy resin. Polymer Degrad. Stab. 173, 109078 (2020). https://doi.org/10.1016/j.polymdegradstab.2020.109078

    Article  CAS  Google Scholar 

  53. T. Badur, C. Dams, N. Hampp, High refractive index polymers by design. Macromolecules. 51(11), 4220–8 (2018). https://doi.org/10.1021/acs.macromol.8b00615

    Article  CAS  Google Scholar 

  54. T. Matsuda, Y. Funae, M. Yoshida, T. Yamamoto, T. Takaya, Optical material of high refractive index resin composed of sulfur-containing aliphatic and alicyclic methacrylates. J. Appl. Polym. Sci. 76(1), 45–49 (2000). https://doi.org/10.1002/(sici)1097-4628(20000404)76:1%3c45::Aid-app6%3e3.0.Co;2-m

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial supports from the National Natural Science Foundation of China (51672201).

Author information

Authors and Affiliations

Authors

Contributions

JG: conceptualization, investigation, writing—original draft, writing—review & editing. XW: conceptualization, writing—review & editing, supervision. CX and XF: formal analysis, investigation, writing—review & editing. SZ: writing—review & editing.

Corresponding author

Correspondence to Xiang Wang.

Ethics declarations

Conflicts of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, J., Wang, X., Xu, C. et al. Polythiourethane composite film with high transparency, high refractive index and low dispersion containing ZnS nanoparticle via thiol-ene click chemistry. Macromol. Res. 31, 603–613 (2023). https://doi.org/10.1007/s13233-023-00144-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-023-00144-7

Keywords

Navigation