Skip to main content
Log in

Local enhancement of concentration gradient through the hydrogel-functionalized anodic aluminum oxide membranes for osmotic power generation

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The salinity gradient between seawater and river water is a type of Gibbs energy that can be converted into electrical energy by an ion-exchange membrane. Although the salinity gradient between two aqueous solutions can be adjusted in a laboratory to improve the energy-harvesting performance, the salinity gradient in natural resources is rather constant, restricting the prospects of membrane-mediated power generation. To address this issue, we demonstrate the local enhancement of the salinity gradient through hydrogel-functionalized anodic aluminum oxide (AAO) membranes. In the composite structure, the surface-modified AAO membrane attracts the mobile counter ions from the hydrogels to increase the local concentration of mobile ions inside the nanopores of AAO membrane. Owing to the local concentration enhancement, the hydrogel-functionalized AAO membranes could extract electrical energy with improved efficiency, which could power small electronic devices.

Graphical Abstract

Hydrogel-functionalized anodic aluminum oxide (AAO) membranes have been prepared, which could locally enhance a concentration gradient in the salinity-gradient cells to extract electric energy with improved efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H. Wang, A. Jasim, X. Chen, Appl. Energy 212, 1083 (2018)

    Article  Google Scholar 

  2. S. Yazdani, M.T. Pettes, Nanotechnology 29, 432001 (2018)

    Article  PubMed  Google Scholar 

  3. F. Narita, M. Fox, Adv. Eng. Mater. 20, 1700743 (2018)

    Article  Google Scholar 

  4. F.R. Fan, W. Tang, Z.L. Wang, Adv. Mater. 28, 4283 (2016)

    Article  CAS  PubMed  Google Scholar 

  5. Y. Bai, H. Jantunen, J. Juuti, Adv. Mater. 30, 1707271 (2018)

    Article  Google Scholar 

  6. H.-M. Kim, J. Ocean Eng. Mar. Energy 4, 343 (2018)

    Article  Google Scholar 

  7. B.E. Logan, M. Elimelech, Nature 488, 313 (2012)

    Article  CAS  PubMed  Google Scholar 

  8. Z. Jia, B. Wang, S. Song, Y. Fan, Renew. Sustain. Energy Rev. 31, 91 (2014)

    Article  Google Scholar 

  9. T. Luo, S. Abdu, M. Wessling, J. Membr. Sci. 555, 429 (2018)

    Article  CAS  Google Scholar 

  10. J. Ran, L. Wu, Y. He, Z. Yang, Y. Wang, C. Jiang, L. Ge, E. Bakangura, T. Xu, J. Membr. Sci. 522, 267 (2017)

    Article  CAS  Google Scholar 

  11. H. Chun, T.D. Chung, Annu. Rev. Anal. Chem. 8, 441 (2015)

    Article  CAS  Google Scholar 

  12. M.A. Shehzad, A. Yasmin, X. Ge, L. Wu, T. Xu, Adv. Mater. Technol. 6, 2001171 (2021)

    Article  CAS  Google Scholar 

  13. J. G. Hong, H. Gao, L. Gan, X. Tong, C. Xiao, S. Liu, B. Zhang, and Y. Chen, in Advanced Nanomaterials for Membrane Synthesis and its Applications, Elsevier, 2019, 295–316.

  14. C. Cobzaru, V. Inglezakis, In Progress in Filtration and Separation, Elsevier, 2015, pp 425–498.

  15. G. Laucirica, M.E. Toimil-Molares, C. Trautmann, W. Marmisollé, O. Azzaroni, Chem. Sci. 12, 12874 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. J. Kim, S.J. Kim, D.-K. Kim, Energy 51, 413 (2013)

    Article  CAS  Google Scholar 

  17. J. Ji, Q. Kang, Y. Zhou, Y. Feng, X. Chen, J. Yuan, W. Guo, Y. Wei, L. Jiang, Adv. Funct. Mater. 27, 1603623 (2017)

    Article  Google Scholar 

  18. A. Siria, M.-L. Bocquet, L. Bocquet, Nat. Rev. Chem. 1, 0091 (2017)

    Article  CAS  Google Scholar 

  19. W. Guo, L. Cao, J. Xia, F.-Q. Nie, W. Ma, J. Xue, Y. Song, D. Zhu, Y. Wang, L. Jiang, Adv. Funct. Mater. 20, 1339 (2010)

    Article  CAS  Google Scholar 

  20. F. Yan, L. Yao, K. Chen, Q. Yang, B. Su, J. Mater. Chem. A. 7, 2385 (2019)

    Article  CAS  Google Scholar 

  21. X. Huang, Z. Zhang, X.-Y. Kong, Y. Sun, C. Zhu, P. Liu, J. Pang, L. Jiang, L. Wen, Nano Energy 59, 354 (2019)

    Article  CAS  Google Scholar 

  22. J. Gao, W. Guo, D. Feng, H. Wang, D. Zhao, L. Jiang, J. Am. Chem. Soc. 136, 12265 (2014)

    Article  CAS  PubMed  Google Scholar 

  23. W. Xin, Z. Zhang, X. Huang, Y. Hu, T. Zhou, C. Zhu, X.-Y. Kong, L. Jiang, L. Wen, Nat. Commun. 10, 3876 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  24. K. Raidongia, J. Huang, J. Am. Chem. Soc. 134, 16528 (2012)

    Article  CAS  PubMed  Google Scholar 

  25. J.-M. Koo, C.H. Park, S. Yoo, G.W. Lee, S.Y. Yang, J.H. Kim, S.I. Yoo, Soft Matter 17, 3700 (2021)

    Article  CAS  PubMed  Google Scholar 

  26. Z. Zhang, X.-Y. Kong, K. Xiao, Q. Liu, G. Xie, P. Li, J. Ma, Y. Tian, L. Wen, L. Jiang, J. Am. Chem. Soc. 137, 14765 (2015)

    Article  CAS  PubMed  Google Scholar 

  27. A. Alizadeh, M. Wang, J. Colloid Interface Sci. 529, 214 (2018)

    Article  CAS  PubMed  Google Scholar 

  28. C. Wang, X.-P. Zhao, F.-F. Liu, Y. Chen, X.-H. Xia, J. Li, Nano Lett. 20, 1846 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Y. Yan, J.V.I. Timonen, B.A. Grzybowski, Nat. Nanotechnol. 9, 901 (2014)

    Article  CAS  PubMed  Google Scholar 

  30. Z. Zhang, L. He, C. Zhu, Y. Qian, L. Wen, L. Jiang, Nat. Commun. 11, 875 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  31. A.M.M. Jani, D. Losic, N.H. Voelcker, Prog. Mater. Sci 58, 636 (2013)

    Article  Google Scholar 

  32. A. M. M. Jani, H. Yazid, A. S. Habiballah, A. H. Mahmud, and D. Losic, in Nanoporous Alumina, D. Losic and A. Santos, Eds., Springer, Cham, 2015, 219, pp 155–184.

  33. S.H. Kwak, S.-R. Kwon, S. Baek, S.-M. Lim, Y.-C. Joo, T.D. Chung, Sci. Rep. 6, 26416 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. A.M.M. Jani, I.M. Kempson, D. Losic, N.H. Voelcker, Angew. Chem. Int. Ed. 49, 7933 (2010)

    Article  CAS  Google Scholar 

  35. R. Li, J. Jiang, Q. Liu, Z. Xie, J. Zhai, Nano Energy 53, 643 (2018)

    Article  CAS  Google Scholar 

  36. M. Ghorbanloo, N. Moharramkhani, T.M. Yazdely, H.H. Monfared, J. Porous Mater. 26, 433 (2019)

    Article  CAS  Google Scholar 

  37. R.G. Acres, A.V. Ellis, J. Alvino, C.E. Lenahan, D.A. Khodakov, G.F. Metha, G.G. Andersson, J. Phys. Chem. C 116, 6289 (2012)

    Article  CAS  Google Scholar 

  38. S. Hong, F. Ming, Y. Shi, R. Li, I.S. Kim, C.Y. Tang, H.N. Alshareef, P. Wang, ACS Nano 13, 8917 (2019)

    Article  CAS  PubMed  Google Scholar 

  39. X. Sui, Z. Zhang, Z. Zhang, Z. Wang, C. Li, H. Yuan, L. Gao, L. Wen, X. Fan, L. Yang, X. Zhang, L. Jiang, Angew. Chem. 128, 13250 (2016)

    Article  Google Scholar 

  40. W. Chen, Q. Zhang, Y. Qian, W. Xin, D. Hao, X. Zhao, C. Zhu, X.-Y. Kong, B. Lu, L. Jiang, L. Wen, A.C.S. Cent, Sci. 6, 2097 (2020)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2019R1A2C1086269, NRF-2022R1A2C1003532). This work was supported by the BB21+ Project in 2022. This work was supported by the Ministry of Trade, Industry, and Energy (MOTIE) (P0016221), and supervised by the Korea Institute for Advancement of Technology (KIAT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Il Yoo.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iseki, T., Biutty, M.N., Park, C.H. et al. Local enhancement of concentration gradient through the hydrogel-functionalized anodic aluminum oxide membranes for osmotic power generation. Macromol. Res. 31, 223–231 (2023). https://doi.org/10.1007/s13233-023-00134-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-023-00134-9

Keywords

Navigation