Skip to main content
Log in

Oxidized Alginate Hydrogel-Based Derivatives with Optimized Features for Cell Culture Scaffold

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Advances in designing smart hydrogels with the structures and properties similar to the interior of extracellular matrix have aroused the interest of researchers as promising cell support scaffolds in the field of tissue engineering. In this study, a novel hydrogel system is developed from natural polysaccharides that are sodium alginate, gelatin and carboxymethyl chitosan through Schiff base cross-linking mechanism. By mixing these three components, the hydrogel system with tunable strength and gelation time was obtained and abbreviated as oxACG hydrogel. Moreover, the obtained hydrogels are biocompatible and can sustain the growth and proliferation of Hela cells after 24 h incubation. The experimental results show that the hydrogel possesses a relatively short gelation time that is around 3 min, high gel strength and negligible cell cytotoxicity. The oxACG hydrogel composite exhibited desirable properties, and they can be used as high-performance multifunctional injectable hydrogels in cell therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Bonnesœur, S. Morin-Grognet, O. Thoumire, D. Le Cerf, O. Boyer, J.-P. Vannier, and B. Labat, J. Biomedical Mater. Res. Part A, 108, 1256 (2020).

    Article  Google Scholar 

  2. G. Jose, K. T. Shalumon, and J.-P. Chen, Current Medicinal Chemistry, 27, 2734 (2020).

    Article  CAS  Google Scholar 

  3. J. Torgersen, X.-H. Qin, Z. Li, A. Ovsianikov, R. Liska, and J. Stampfl, Ad. Functional Mater., 23, 4542 (2013).

    Article  CAS  Google Scholar 

  4. P. Le Thi, J. Y. Son, Y. Lee, S. B. Ryu, K. M. Park, and K. D. Park, Macromol. Res., 2020, 1.

  5. K. M. Park, Y. K. Joung, K. D. Park, S. Y. Lee, and M. C. Lee, Macromol. Res., 16, 517 (2008).

    Article  CAS  Google Scholar 

  6. N. E. Fedorovich, J. Alblas, J. R. de Wijn, W. E. Hennink, A. J. Verbout, and W. J. Dhert, Tissue Engineering, 13, 1905 (2007).

    Article  CAS  Google Scholar 

  7. Y. Tabata, Tissue Engineering, 9, 5 (2003).

    Article  Google Scholar 

  8. T. Vermonden, R. Censi, and W. E. Hennink, Chem. Rev., 112, 2853 (2012).

    Article  CAS  Google Scholar 

  9. Y. Li, J. Rodrigues, and H. Tomas, Chem. Soc. Rev., 41, 2193 (2012).

    Article  CAS  Google Scholar 

  10. P. M. Kharkar, K. L. Kiick, and A. M. Kloxin, Chem. Soc. Rev., 42, 7335 (2013).

    Article  CAS  Google Scholar 

  11. A. Sivashanmugam, R. A. Kumar, M. V. Priya, S. V. Nair, and R. Jayakumar, Europ. Polym. J., 72, 543 (2015).

    Article  CAS  Google Scholar 

  12. O. Wichterle and D. Lim, Nature, 185, 117 (1960).

    Article  Google Scholar 

  13. M. Tollar, M. Štol, and K. Kliment, J. Biomedical Mater. Res., 3, 305 (1969).

    Article  CAS  Google Scholar 

  14. D. Kim, M. Thangavelu, J. S. Baek, H. S. Kim, M. J. Choi, H. H. Cho, J. E. Song, and G. Khang, Macromol. Res., 28, 196 (2020).

    Article  CAS  Google Scholar 

  15. L. Li, J. M. Scheiger, and P. A. Levkin, Ad. Mater., 31, 1807333 (2019).

    Article  Google Scholar 

  16. J. Qu, X. Zhao, P. X. Ma, and B. Guo, Acta Biomaterialia, 58, 168 (2017).

    Article  CAS  Google Scholar 

  17. P. Kuchaiyaphum, C. Chotichayapong, N. Butwong, and W. Bua-ngern, Macromol. Res., 28, 844 (2020).

    Article  CAS  Google Scholar 

  18. C. G. Gomez, M. Rinaudo, and M. A. Villar, Carbohydrate Polymers, 67, 296 (2007).

    Article  CAS  Google Scholar 

  19. T. Wu, Y. Li, and D. S. Lee, Macromol. Res., 25, 480 (2017).

    Article  CAS  Google Scholar 

  20. J. Lou, R. Stowers, S. Nam, Y. Xia, and O. Chaudhuri, Biomaterials, 154, 213 (2018).

    Article  CAS  Google Scholar 

  21. S. L. Vega, M. Y. Kwon, K. H. Song, C. Wang, R. L. Mauck, L. Han, and J. A. Burdick, Nature Communications, 9, 1 (2018).

    Article  CAS  Google Scholar 

  22. C. K. Song, M.-K. Kim, J. Lee, E. Davaa, R. Baskaran, and S.-G. Yang, Macromol. Res., 27, 119 (2019).

    Article  CAS  Google Scholar 

  23. J. L. Drury and D. J. Mooney, Biomaterials, 24, 4337 (2003).

    Article  CAS  Google Scholar 

  24. Q.-Z. Chen, S. E. Harding, N. N. Ali, A. R. Lyon, and A. R. Boccaccini, Mater. Sci. Eng.: R: Reports, 59, 1 (2008).

    Article  Google Scholar 

  25. E. H. Kim, S. Lim, T. E. Kim, I. O. Jeon, and Y. S. Choi, Biotechnology and Bioprocess Eng., 23, 500 (2018).

    Article  CAS  Google Scholar 

  26. J. S. Baek, C. Carlomagno, T. Muthukumar, D. Kim, J. H. Park, J. E. Song, C. Migliaresi, A. Motta, R. L. Reis, and G. Khang, Macromol. Res., 27, 558 (2019).

    Article  CAS  Google Scholar 

  27. J. Qu, X. Zhao, Y. Liang, T. Zhang, P. X. Ma, and B. Guo, Biomaterials, 183, 185 (2018).

    Article  CAS  Google Scholar 

  28. Q. Feng, J. Xu, K. Zhang, H. Yao, N. Zheng, L. Zheng, J. Wang, K. Wei, X. Xiao, and L. Qin, ACS Central Sci., 5, 440 (2019).

    Article  CAS  Google Scholar 

  29. L. Tan, Y. Liu, W. Ha, L.-S. Ding, S.-L. Peng, S. Zhang, and B.-J. Li, Soft Matter, 8, 5746 (2012).

    Article  CAS  Google Scholar 

  30. B. Balakrishnan, N. Joshi, A. Jayakrishnan, and R. Banerjee, Acta Biomaterialia, 10, 3650 (2014).

    Article  CAS  Google Scholar 

  31. F. Ullah, M. B. H. Othman, F. Javed, Z. Ahmad, and H. M. Akil, Mater. Sci. Eng. C, 57, 414 (2015).

    Article  CAS  Google Scholar 

  32. O. Jeon, D. S. Alt, S. M. Ahmed, and E. Alsberg, Biomaterials, 33, 3503 (2012).

    Article  CAS  Google Scholar 

  33. M. Prabaharan, J. Biomaterials Applications, 23, 5 (2008).

    Article  CAS  Google Scholar 

  34. C. Yang, L. Xu, Y. Zhou, X. Zhang, X. Huang, M. Wang, Y. Han, M. Zhai, S. Wei, and J. Li, Carbohydrate Polymers, 82, 1297 (2010).

    Article  CAS  Google Scholar 

  35. S. Yan, T. Wang, L. Feng, J. Zhu, K. Zhang, X. Chen, L. Cui, and J. Yin, Biomacromolecules, 15, 4495 (2014).

    Article  CAS  Google Scholar 

  36. M. Mehedi Hasan, M. Nuruzzaman Khan, P. Haque, and M. M. Rahman, Int. J. Biological Macromol., 117, 1110 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge financial support from National Natural Science Foundation of China (NNSFC) Project (21674104 and 21875234), and the International Science Program (ISP) for financial support granted through the research project IPICS RWA01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Felix Mukerabigwi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Twizeyimana, E., Zhang, S., Mukerabigwi, J.F. et al. Oxidized Alginate Hydrogel-Based Derivatives with Optimized Features for Cell Culture Scaffold. Macromol. Res. 30, 238–244 (2022). https://doi.org/10.1007/s13233-022-0030-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-022-0030-z

Keywords

Navigation