Skip to main content
Log in

Performance Improvement of Hydrophobized Bacterial Cellulose Films as Wound Dressing

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

In the wound dressing research field, there is a continuous search for high-quality materials which present properties superior to those already used. Bacterial cellulose films are recognized as being effective, but their performance can still be further enhanced. On the other hand, wound dressings which present surfaces modified with hydrophobic molecules, such as dialkyl carbamoyl chloride, appear to be an alternative material, acting as antimicrobial dressings. Based on that, this paper describes the synthesis of small hydrophobic molecules based on inexpensive alcohols, such as octyl and benzyl alcohol, conjugated to the hydroxyl groups of bacterial cellulose. The films were prepared using ultrasound irradiation and characterized via infrared, as well as for their wettability and water absorption capacity, which showed greater contact angles and similar moisture retention when compared to unmodified films. Morphological aspects of modified films were analyzed by scanning electron microscope (SEM) and minimal modification in the structure was found. The hydrophobized cellulose films showed cytocompatibility with fibroblasts, and antimicrobial activity when compared to native bacterial cellulose films, by reducing the bacterial load up to 75%. This type of modification on these films is of interest in order to prepare films with better properties as dressings based on bacterial cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. I. Sulaeva, U. Henniges, T. Rosenau, and A. Potthast, Biotechnol. Adv., 33, 1547 (2015).

    Article  CAS  Google Scholar 

  2. S. Homaeigohar and A. R. Boccaccini, Acta Biomater., 107, 25 (2020).

    Article  CAS  Google Scholar 

  3. F. Aavani, S. Khorshidi, and A. Karkhaneh, J. Med. Eng. Technol., 43, 38 (2019).

    Article  Google Scholar 

  4. K. Kalantari, E. Mostafavi, A. M. Afifi, Z. Izadiyan, H. Jahangirian, R. Rafiee-Moghaddam, and T. J. Webster, Nanoscale, 12, 2268 (2020).

    Article  CAS  Google Scholar 

  5. P. Chadwick and K. Ousey, J. Wound Care, 28, 370 (2019).

    Article  Google Scholar 

  6. T. Wadström, S. Björnberg, and S. Hjertén, Acta Pathol. Microbiol. Scand. Ser. B Microbiol., 93B, 359 (1985).

    Google Scholar 

  7. H. Braunwarth and F. H. H. Brill, Wound Med., 5, 16 (2014).

    Article  Google Scholar 

  8. Z. Zheng, Q. Xu, J. Guo, J. Qin, H. Mao, B. Wang, and F. Yan, ACS Appl. Mater. Interfaces, 8, 12684 (2016).

    Article  CAS  Google Scholar 

  9. M. C. Wiener, P. S. Horanyi, T. Om, and T. Om, Proc. Natl. Acad. Sci., 108, 10929 (2011).

    Article  CAS  Google Scholar 

  10. L. Fu, J. Zhang, and G. Yang, Carbohydr. Polym., 92, 1432 (2013).

    Article  CAS  Google Scholar 

  11. N. Shah, M. Ul-Islam, W. A. Khattak, and J. K. Park, Carbohydr. Polym., 98, 1585 (2013).

    Article  CAS  Google Scholar 

  12. M. Shoda, Y. Sugano, N. Petersen, and P. Gatenholm, Appl. Microbiol. Biotechnol., 91, 1277 (2011).

    Article  Google Scholar 

  13. H. Abushammala and J. Mao, Molecules, 24, 2782 (2019).

    Article  Google Scholar 

  14. Y. Habibi, Chem. Soc. Rev., 43, 1519 (2014).

    Article  CAS  Google Scholar 

  15. F. G. Blanco Parte, S. P. Santoso, C.-C. Chou, V. Verma, H.-T. Wang, S. Ismadji, and K.-C. Cheng, Crit. Rev. Biotechnol., 40, 397 (2020).

    Article  CAS  Google Scholar 

  16. J. Wu, Y. Zheng, W. Song, J. Luan, X. Wen, Z. Wu, X. Chen, Q. Wang, and S. Guo, Carbohydr. Polym., 102, 762 (2014).

    Article  CAS  Google Scholar 

  17. I. Bernardelli de Mattos, S. P. Nischwitz, A.-C. Tuca, F. Groeber-Becker, M. Funk, T. Birngruber, S. I. Mautner, L.-P. Kamolz, and J. C. J. Holzer, Burns, 46, 918 (2020).

    Article  Google Scholar 

  18. M. I. N. Ahamed, S. Sankar, P. M. Kashif, S. K. H. Basha, and T. P. Sastry, Int. J. Biol. Macromol., 72, 680 (2015).

    Article  CAS  Google Scholar 

  19. M. L. Cacicedo, G. Pacheco, G. A. Islan, V. A. Alvarez, H. S. Barud, G. R. Castro, Int. J. Biol. Macromol., 147, 1136 (2020).

    Article  CAS  Google Scholar 

  20. H. Namazi, R. Rakhshaei, H. Hamishehkar, and H. S. Kafil, Int. J. Biol. Macromol., 85, 327 (2016).

    Article  CAS  Google Scholar 

  21. I. Orlando, P. Basnett, R. Nigmatullin, W. Wang, J. C. Knowles, and I. Roy, Front. Bioeng. Biotechnol., 8, 1 (2020).

    Article  Google Scholar 

  22. F. D. E. Goelzer, P. C. S. Faria-Tischer, J. C. Vitorino, M. R. Sierakowski, C. A. Tischer, Mater. Sci. Eng. C, 29, 546 (2009).

    Article  CAS  Google Scholar 

  23. T. Mosmann, J. Immunol. Methods, 65, 55 (1983).

    Article  CAS  Google Scholar 

  24. CLSI, Performance Standards for Antimicrobial Susceptibility Testing. Informational Supplement, Clinical & Laboratory Standards Institute.

  25. S. Birkheur, E. Laureto, R. V. Fernandes, C. Tischer, A. P. Butera, and R. M. Ribeiro-Viana, Mater. Res., 23, e20200197 (2020).

    Article  CAS  Google Scholar 

  26. S. Kaewnopparat, K. Sansernluk, and D. Faroongsarng, AAPS PharmSciTech, 9, 701 (2008).

    Article  CAS  Google Scholar 

  27. K. Khanmohammadi Chenab, B. Sohrabi, and A. Rahmanzadeh, Biomater. Sci., 7, 3110 (2019).

    Article  CAS  Google Scholar 

  28. R. Song, Y. Zhang, Q. Huang, Y. Yang, L. Lin, J. Liang, R. Hu, G. Rui, and C. Lin, ACS Appl. Bio Mater., 1, 1056 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Márcio Ribeiro-Viana.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Disclosure information

The data of this work were deposited in the form of a patent by the authors and institutions under the number BR 10 2020 020709 1.

Supporting Information

Information is available on the 13C and IR characterization of the synthesized molecules, in addition to the IR spectrum of the films that were reacted under conditions of absence of DIC coupling agent. The materials are available via the Internet at http://www.springer.com/13233.

Acknowledgment: The authors would like to thank the Spectroscopy Laboratory at the State University of Londrina (SPEC-UEL-CT INFRA 2009-01.10.0534.01), the Multiuser Laboratory at the Federal University of Technology — Paraná — Londrina campus — for the analyses performed and Scanning Electron Microscopy Laboratory at State University of Maringa (Dr Eduardo Radovanovic). The authors would also like to acknowledge the financial support received from CNPq — Brazilian National Counsel of Technological and Scientific Development (423643/2018-5), CAPES and Araucária Foundation for Scientific and Technological Development of Paraná State.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, K.B., Higawa, G.E., Conceição, K.S. et al. Performance Improvement of Hydrophobized Bacterial Cellulose Films as Wound Dressing. Macromol. Res. 30, 116–123 (2022). https://doi.org/10.1007/s13233-022-0005-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-022-0005-0

Keywords

Navigation