Skip to main content

Fullerene-Based Photoactive A-D-A Triads for Single-Component Organic Solar Cells: Incorporation of Non-Fused Planar Conjugated Core

Abstract

Two acceptor-donor-acceptor (A-D-A) single-component (SC) photovoltaic triad molecules, P3T4Rh-C6-PC61BM and P3T4Rh-C10-PC61BM, were synthesized. A conformation-locked planar conjugated core, 1,4-bis(thiophenylphenylthiophene)-2,5-difluorophenylene (P3T4), with intrachain noncovalent coulombic interactions was coupled with two fullerene derivatives, [6,6]-phenyl-C61 butyric acid propargyl ester, via copper (I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition. The D-A separation was varied by modulating the spacer alkyl chain length (C6 and C10). Both SC triads exhibited maximum absorption by the P3T4 core at λabs = 507-510 nm, as well as absorption by PC61BM at ∼300 nm. Because of the broken conjugation between the P3T4 core and PC61BM termini, the highest occupied molecular orbital (−5.58 to −5.59 eV) was determined by the P3T4 moiety, and the lowest unoccupied molecular orbital (−3.89 to −3.92 eV) was determined by PC61BM in the SC structures. In diluted solution, both SC triads showed significant photoluminescence quenching, indicating efficient intramolecular charge transfer between the P3T4 and PC61BM moieties. However, the semicrystalline packing of the P3T4 core was severely disrupted by the incorporation of a bulky PC61BM moiety at each terminus, which degraded the carrier transport and diode characteristics of SC organic solar cells (SCOSCs) based on P3T4Rh-C6-PC61BM and P3T4Rh-C10-PC61BM, as indicated by poor power conversion efficiency (∼0.4%). No clear spacer length effect was observed. To improve the performance of SCOSCs, a design strategy is needed that enhances the intermolecular packing and ordering of the D and A moieties, which are important prerequisites for the development of optimal SC photoactive molecules.

This is a preview of subscription content, access via your institution.

References

  1. K. Fukuda, K. Yu, and T. Someya, Adv. Energy. Mater., 10, 2000765 (2020).

    CAS  Google Scholar 

  2. D. Koo, S. Jung, J. Seo, G. Jeong, Y. Choi, J. Lee, S. M. Lee, Y. Cho, M. Jeong, J. Lee, J. Oh, C. Yang, and H. Park, Joule, 4, 1021 (2020).

    CAS  Google Scholar 

  3. G. D. Wang, M. A. Adil, J. Q. Zhang, and Z. X. Wei, Adv. Mater., 31, 1805089 (2019).

    CAS  Google Scholar 

  4. M. Kaltenbrunner, M. S. White, E. D. Glowacki, T. Sekitani, T. Someya, N. S. Sariciftci, and S. Bauer, Nat. Commun., 3, 770 (2012).

    PubMed  Google Scholar 

  5. C. Li, J. D. Zhou, J. L. Song, J. Q. Xu, H. T. Zhang, X. N. Zhang, J. Guo, L. Zhu, D. H. Wei, G. C. Han, J. Min, Y. Zhang, Z. Q. Xie, Y. P. Yi, H. Yan, F. Gao, F. Liu, and Y. M. Sun, Nat. Energy., 6, 605 (2021).

    CAS  Google Scholar 

  6. C. Zhu, L. Meng, J. Y. Zhang, S. C. Qin, W. B. Lai, B. B. Qiu, J. Yuan, Y. Wan, W. C. Huang, and Y. F. Li, Adv. Mater., 33, 2100474 (2021).

    CAS  Google Scholar 

  7. Y. Cui, H. F. Yao, J. Q. Zhang, K. H. Xian, T. Zhang, L. Hong, Y. M. Wang, Y. Xu, K. Q. Ma, C. B. An, C. He, Z. X. Wei, F. Gao, and J. H. Hou, Adv. Mater., 32, 1908205 (2020).

    CAS  Google Scholar 

  8. G. Y. Zhang, H. J. Ning, H. Chen, Q. J. Jiang, J. Q. Jiang, P. W. Han, L. Dang, M. C. Xu, M. Shao, F. He, and Q. H. Wu, Joule, 5, 931 (2021).

    CAS  Google Scholar 

  9. J. Roncali and I. Grosu, Adv. Sci., 6, 1801026 (2019).

    Google Scholar 

  10. Y. He, N. Li, and C. J. Brabec, Org. Mater., 3, 228 (2021).

    CAS  Google Scholar 

  11. G. U. Kim, Y. W. Lee, B. S. Ma, J. Kim, J. S. Park, S. Lee, T. L. Nguyen, M. Song, T. S. Kim, H. Y. Woo, and B. J. Kim, J. Mater. Chem. A, 8, 13522 (2020).

    CAS  Google Scholar 

  12. W. Y. Yang, Z. H. Luo, R. Sun, J. Guo, T. Wang, Y. Wu, W. Wang, J. Guo, Q. Wu, M. M. Shi, H. N. Li, C. L. Yang, and J. Min, Nat. Commun., 11, 1218 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  13. S. Izawa, K. Hashimoto, and K. Tajima, Phys. Chem. Chem. Phys., 14, 16138 (2012).

    PubMed  CAS  Google Scholar 

  14. J. A. Bartelt, Z. M. Beiley, E. T. Hoke, W. R. Mateker, J. D. Douglas, B. A. Collins, J. R. Tumbleston, K. R. Graham, A. Amassian, H. Ade, J. M. J. Frechet, M. F. Toney, and M. D. McGehee, Adv. Energy. Mater., 3, 364 (2013).

    CAS  Google Scholar 

  15. H. Cha, J. Q. Li, Y. F. Li, S. O. Kim, Y. H. Kim, and S. K. Kwon, Macromol. Res., 28, 820 (2020).

    CAS  Google Scholar 

  16. X. D. Jiang, J. J. Yang, S. Karuthedath, J. Y. Li, W. N. Lai, C. Li, C. Y. Xiao, L. Ye, Z. F. Ma, Z. Tang, F. Laquai, and W. W. Li, Angew. Chem., Int. Ed., 59, 21683 (2020).

    CAS  Google Scholar 

  17. Y. Wu, J. Guo, W. Wang, Z. H. Chen, Z. Chen, R. Sun, Q. Wu, T. Wang, X. T. Hao, H. M. Zhu, and J. Min, Joule, 5, 1800 (2021).

    CAS  Google Scholar 

  18. S. Y. Li, X. Yuan, Q. L. Zhang, B. Li, Y. X. Li, J. G. Sun, Y. F. Feng, X. N. Zhang, Z. Wu, H. Wei, M. Wang, Y. Y. Hu, Y. Zhang, H. Y. Woo, J. Y. Yuan, and W. L. Ma, Adv. Mater., 33, 2101295 (2021).

    CAS  Google Scholar 

  19. C. G. Park, S. H. Park, Y. Kim, T. L. Nguyen, H. Y. Woo, H. Kang, H. J. Yoon, S. Park, M. J. Cho, and D. H. Choi, J. Mater. Chem. A, 7, 21280 (2019).

    CAS  Google Scholar 

  20. S. H. Park, Y. Kim, N. Y. Kwon, Y. W. Lee, H. Y. Woo, W. S. Chae, S. Park, M. J. Cho, and D. H. Choi, Adv. Sci., 7, 1902470 (2020).

    CAS  Google Scholar 

  21. C. Li, X. X. Wu, X. Y. Sui, H. B. Wu, C. Wang, G. T. Feng, Y. G. Wu, F. Liu, X. F. Liu, Z. Tang, and W. W. Li, Angew. Chem., Int. Ed., 58, 15532 (2019).

    CAS  Google Scholar 

  22. F. Pierini, M. Lanzi, P. Nakielski, S. Pawlowska, O. Urbanek, K. Zembrzycki, and T. A. Kowalewski, Macromolecules, 50, 4972 (2017).

    CAS  Google Scholar 

  23. A. Cravino and N. S. Sariciftci, J. Mater. Chem., 12, 1931 (2002).

    CAS  Google Scholar 

  24. G. T. Feng, J. Y. Li, F. J. M. Colberts, M. M. Li, J. Q. Zhang, F. Yang, Y. Z. Jin, F. L. Zhang, R. A. J. Janssen, C. Li, and W. W. Li, J. Am. Chem. Soc., 139, 18647 (2017).

    PubMed  CAS  Google Scholar 

  25. W. B. Lai, C. Li, J. Q. Zhang, F. Yang, F. J. M. Colberts, B. Guo, Q. M. Wang, M. M. Li, A. D. Zhang, R. A. J. Janssen, M. J. Zhang, and W. W. Li, Chem. Mater., 29, 7073 (2017).

    CAS  Google Scholar 

  26. C. Li, C. S. Yu, W. B. Lai, S. J. Liang, X. D. Jiang, G. T. Feng, J. Q. Zhang, Y. H. Xu, and W. W. Li, Macromol. Rapid Commun., 39, 1700611 (2018).

    Google Scholar 

  27. G. T. Feng, J. Y. Li, Y. K. He, W. Y. Zheng, J. Wang, C. Li, Z. Tang, A. Osvet, N. Li, C. J. Brabec, Y. P. Yi, H. Yan, and W. W. Li, Joule, 3, 1765 (2019).

    CAS  Google Scholar 

  28. F. Yang, J. Y. Li, C. Li, and W. W. Li, Macromolecules, 52, 3689 (2019).

    CAS  Google Scholar 

  29. P. T. Yu, G. T. Feng, J. Y. Li, C. Li, Y. H. Xu, C. Y. Xiao, and W. W. Li, J. Mater. Chem. C, 8, 2790 (2020).

    CAS  Google Scholar 

  30. W. Wang, R. Sun, J. Guo, J. Guo, and J. Min, Angew. Chem., Int. Ed., 58, 14556 (2019).

    CAS  Google Scholar 

  31. T. L. Nguyen, T. H. Lee, B. Gautam, S. Y. Park, K. Gundogdu, J. Y. Kim, and H. Y. Woo, Adv. Funct. Mater., 27, 1702474 (2017).

    Google Scholar 

  32. K. Narayanaswamy, A. Venkateswararao, P. Nagarjuna, S. Bishnoi, V. Gupta, S. Chand, and S. P. Singh, Angew. Chem., Int. Ed., 55, 12334 (2016).

    CAS  Google Scholar 

  33. S. Lucas, T. Leydecker, P. Samori, E. Mena-Osteritz, and P. Bauerle, Chem. Commun., 55, 14202 (2019).

    CAS  Google Scholar 

  34. S. Lucas, J. Kammerer, M. Pfannmoller, R. R. Schroder, Y. K. He, N. Li, C. J. Brabec, T. Leydecker, P. Samori, T. Marszalek, W. Pisula, E. Mena-Osteritz, and P. Bauerle, Sol. RRL, 5, 2000653 (2021).

    CAS  Google Scholar 

  35. A. Aubele, Y. He, T. Kraus, N. Li, E. Mena-Osteritz, P. Weitz, T. Heumüller, K. Zhang, C. J. Brabec, and P. Bäuerle, Adv. Mater., 2103573 (2021).

  36. A. Torpe and D. J. Belton, Anal. Sci., 31, 125 (2015).

    PubMed  CAS  Google Scholar 

  37. M. J. Kim, Y. W. Lee, Y. Lee, H. Y. Woo, and J. H. Cho, J. Mater. Chem. C, 6, 5698 (2018).

    CAS  Google Scholar 

  38. M. A. Uddin, T. H. Lee, S. Xu, S. Y. Park, T. Kim, S. Song, T. L. Nguyen, S. J. Ko, S. Hwang, J. Y. Kim, and H. Y. Woo, Chem. Mater., 27, 5997 (2015).

    CAS  Google Scholar 

  39. B. Z. Xia, K. Lu, L. Yuan, J. Q. Zhang, L. Y. Zhu, X. W. Zhu, D. Deng, H. Li, and Z. X. Wei, Polym. Chem., 7, 1323 (2016).

    CAS  Google Scholar 

  40. Y. H. Liu, Z. Zhang, S. Y. Feng, M. Li, L. L. Wu, R. Hou, X. J. Xu, X. B. Chen, and Z. S. Bo, J. Am. Chem. Soc., 139, 3356 (2017).

    PubMed  CAS  Google Scholar 

  41. Z. H. Yao, Y. K. Li, S. X. Li, J. L. Xiang, X. X. Xia, X. H. Lu, M. M. Shi, and H. Z. Chen, ACS Appl. Energy Mater., 4, 819 (2021).

    CAS  Google Scholar 

  42. F. Amblard, J. H. Cho, and R. F. Schinazi, Chem. Rev., 109, 4207 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  43. P. M. Diz, A. Coelho, A. El Maatougui, J. Azuaje, O. Caamano, A. Gil, and E. Sotelo, J. Org. Chem., 78, 6540 (2013).

    PubMed  CAS  Google Scholar 

  44. S. Diez-Gonzalez, Catal. Sci. Technol., 1, 166 (2011).

    CAS  Google Scholar 

  45. Y. W. Lee, J. Yeop, H. Lim, W.-W. Park, J. F. Joung, S. Park, O.-H. Kwon, J. Y. Kim, and H. Y. Woo, ACS Appl. Mater. Interfaces. (2021).

  46. K. C. Dickey, J. E. Anthony, and Y. L. Loo, Adv. Mater., 18, 1721 (2006).

    CAS  Google Scholar 

  47. M. Lenes, M. Morana, C. J. Brabec, and P. W. M. Blom, Adv. Funct. Mater., 19, 1106 (2009).

    CAS  Google Scholar 

  48. W. Tress, K. Leo, and M. Riede, Phys. Rev. B, 85 (2012).

  49. K. D. Rosenthal, M. P. Hughes, B. R. Luginbuhl, N. A. Ran, A. Karki, S. J. Ko, H. Hu, M. Wang, H. Ade, and T. Q. Nguyen, Adv. Energy. Mater., 9, 1901077 (2019).

    Google Scholar 

  50. J. Z. Yao, T. Kirchartz, M. S. Vezie, M. A. Faist, W. Gong, Z. C. He, H. B. Wu, J. Troughton, T. Watson, D. Bryant, and J. Nelson, Phys. Rev. Appl., 4, 014020 (2015).

    Google Scholar 

  51. X. N. Zhang, X. B. Zuo, S. K. Xie, J. Y. Yuan, H. Q. Zhou, and Y. Zhang, J. Mater. Chem. A, 5, 17230 (2017).

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Research Foundation (NRF) of Korea (Grants NRF-2019R1A2C2085290, 2019R1A6A1A11044070, 2020M3H4A3081814). We thank the Institute for Basic Science (IBS) Center for Molecular Spectroscopy and Dynamics (IBS-R023-D1) for providing (NMR Spectrometry) and professional technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Young Kim or Han Young Woo.

Additional information

Supporting information

Supporting information is available including followings: experimental results for TGA, DSC thermograms, AFM topographic images, GIWAXS packing parameters, and NMR spectra. The materials are available via the Internet at http://www.springer.com/13233.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supporting Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, Y.W., Yeop, J., Kim, J.Y. et al. Fullerene-Based Photoactive A-D-A Triads for Single-Component Organic Solar Cells: Incorporation of Non-Fused Planar Conjugated Core. Macromol. Res. 29, 871–881 (2021). https://doi.org/10.1007/s13233-021-9100-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-021-9100-x

Keywords

  • organic solar cells
  • organic photovoltaics
  • single component organic solar cells
  • fullerene-based triads
  • thin film morphology