Skip to main content

Flame Retardancy of Epoxy Resin Improved by Graphene Hybrid Containing Phosphorous, Boron, Nitrogen and Silicon Elements

Abstract

An effective ternary organic-inorganic composite flame retardant of reduced graphene oxide-poly-dopamine@graphitic carbon nitride@10-(2,5-dihydroxyphenyl)-10-H-9-oxa-10-phosphaphenanthrene-10-oxide (RGO-PDA@g-C3N4@ODOPB) was successfully fabricated by co-precipitation method. Its property concerning the intrinsic flame retardancy and the mechanical performance was well studied when it was used as co-additives in combination with ammonium polyphosphate (APP) in epoxy resin (EP) samples. The surface morphology and the structure of RGO-PDA@g-C3N4@ODOPB were characterized by SEM, and the molecular structure and compositions were investigated by FT-IR, powder XRD and 1H NMR. TGA, limit oxygen index (LOI), vertical burning test (UL-94), cone calorimeter test, and SEM were also used to investigate the thermal properties and flame retardancy of materials. As expected, the flame retardancy of EP was significantly heightened after adding of RGO-PDA@g-C3N4@ODOPB composites. It showed that with the 20% adding of RGO-PDA@g-C3N4@ODOPB/APP into EP led to the decreasing of the peak heat release rate and the total heat release at 78% and 62.5%, respectively. Meanwhile, the LOI value of the EP composites was as high as 29% and reached UL-94 V-0 rate. It was deemed that the excellent flame retardancy was attributed to the forming of compact and stable carbon layer, which was being catalytic carbonization by APP existed in the RGO-PDA@g-C3N4@ODOPB/APP composites. At the same time, the non-combustible gas released from thermal cracking of g-C3N4 during the combustion also benefited the flame retardant performance of EP.

This is a preview of subscription content, access via your institution.

References

  1. (1)

    X. Zhou, S. Qiu, W. Y. Xing, C. S. R. Gangireddy, Z. Gui, and Y. Hu, ACS Appl. Mater. Interfaces, 34, 29147 (2017).

    Article  CAS  Google Scholar 

  2. (2)

    C. Liu, T. Chen, C. H. Yuan, C. F. Song, Y. Chang, G. R. Chen, Y. T. Xu, and L. Z. Dai, J. Mater. Chem. A, 4, 3462 (2016).

    CAS  Article  Google Scholar 

  3. (3)

    X. Guo, H. Wang, D. Ma, J. He, and Z. Q. Lei, J. Appl. Polym. Sci.., 135, 46410 (2018).

    Article  CAS  Google Scholar 

  4. (4)

    M. Venier, A. Salamova, and R. A. Hites, Accounts Chem. Res., 48, 1853 (2015).

    CAS  Article  Google Scholar 

  5. (5)

    H. K. Lee, H. Kang, S. Lee, S. Kim, K. Choi, and H. B. Moon, Sci. Total Environ., 719, 137386 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. (6)

    Z. W. Yang, X. X. Liang, X. Q. Xu, C. Lei, X. L. He, T. Song, W. Y. Huo, H. C. Ma, and Z. Q. Lei, RSC Adv., 70, 65921 (2016).

    Article  CAS  Google Scholar 

  7. (7)

    J. Dumont, U. Martinez, K. Artyushkova, G. Purdy, A. Dattelbaum, P. Zelenay, A. Mohite, P. Atanassov, and G. Gupta, ACS Appl. Nano Mater., 2, 1675 (2019).

    CAS  Article  Google Scholar 

  8. (8)

    A. Capezza, R. Andersson, V. Ström, Q. Wu, B. Sacchi, S. Farris, M. Hedenqvist, and R. Olsson, ACS Omega, 4, 3458 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. (9)

    L. Lingamdinne, J. Koduru, and R. R. Karri, J. Environ. Manage., 231, 622 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. (10)

    X. L. Wang, X. Cheng, Y. Y. Li, G. Li, and J. Xu, Solar Energy, 179, 128 (2019).

    CAS  Article  Google Scholar 

  11. (11)

    X. L. Yu, X. D. Chen, X. Ding, X. P. Chen, X. Yu, and X. Zhao, Sens. Actuators B Chem., 283, 761 (2019).

    CAS  Article  Google Scholar 

  12. (12)

    M. Goumri, B. Lucas, B. Ratier, and M. Baitoul, Sens. Actuators B Chem., 23, 1097 (2018).

    Google Scholar 

  13. (13)

    R. Khose, P. Wadekar, D. Pethsangave, G. Chakraborty, A. Ray, and S. Some, Chemosphere, 246, 125785 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. (14)

    W. H. Chen, P. J. Liu, L. Z. Min, Y. M. Zhou, Y. Liu, Q. Wang, and W. F. Duan, Nano-Micro Lett., 10, 39 (2018).

    Article  CAS  Google Scholar 

  15. (15)

    L. Y. Dong, C. G. Hu, L. Song, X. K. Huang, N. Chen, and L. T. Qu, Adv. Funct. Mater., 26, 1470 (2016).

    CAS  Article  Google Scholar 

  16. (16)

    W. Z. Xu, B. L. Zhang, X. L. Wang, G. S. Wang, and D. Ding, J. Hazard. Mater., 343, 364 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. (17)

    Y. B. Hou, S. L. Qiu, Y. Hu, C. K. Kundu, Z. Gui, and W. Z. Hu, ACS Appl. Mater. Interfaces, 10, 8359 (2018).

    Article  CAS  Google Scholar 

  18. (18)

    Y. Z. Feng, J. Hu, Y. Xue, C. G. He, X. P. Zhou, X. L. Xie, Y. S. Ye, and Y. W. Mai, ACS Appl. Mater. Interfaces, 10, 21628 (2018).

    CAS  PubMed  Article  Google Scholar 

  19. (19)

    Q. Wu, L. X. Gong, Y. Li, C. F. Cao, L. C. Tang, L. B. Wu, L. Zhao, G. D. Zhang, S. N. Li, J. F. Gao, Y. J. Li, and Y. W. Mai, ACS Nano, 12, 416 (2017).

    PubMed  Article  CAS  Google Scholar 

  20. (20)

    H. Kim, D. W. Kim, V. Vasagar, H. Ha, S. Nazarenko, and C. J. Ellison, Adv. Funct. Mater., 28, 1803172 (2018).

    Article  CAS  Google Scholar 

  21. (21)

    H. X. Shao, X. Zhao, Y. B. Wang, R. Mao, Y. Wang, M. Qiao, and Y. F. Zhu, Appl. Catal. B: Environ., 218, 810 (2017).

    CAS  Article  Google Scholar 

  22. (22)

    Y. Y. Wang, W. J. Yang, X. J. Chen, J. Wang, and Y. F. Zhu, Appl. Catal. B: Environ., 220, 337 (2018).

    CAS  Article  Google Scholar 

  23. (23)

    L. L. Qu, N. Wang, H. Xu, W. P. Wang, Y. Liu, L. Kuo, T. P. Yadav, L. J. Wu, J. Joyner, Y. H. Song, H. T. Li, J. Lou, R. Vajtai, and P. Ajayal, Adv. Funct. Mater., 27, 1701714 (2017).

    Article  CAS  Google Scholar 

  24. (24)

    Y. L. Zhu, Y. Q. Shi, Z. Q. Huang, L. J. Duan, Q. L. Tai, and Y. Hu, Compos. Part A: Appl. Sci. Manufact., 99, 149 (2017).

    CAS  Article  Google Scholar 

  25. (25)

    Y. B. Hou, L. X. Liu, S. L. Qiu, X. Zhou, Z. Gui, and Y. Hu, ACS Appl. Mater. Interfaces, 10, 8274 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. (26)

    Z. J. Wu, J. L. Li, Y. P. Chen, Z. Wang, and S. C. Li, J. Appl. Polym. Sci., 131, 40848 (2014).

    Google Scholar 

  27. (27)

    B. Liang, J. Cao, X. D. Hong, and C. S. Wang, J. Appl. Polym. Sci., 128, 2759 (2013).

    CAS  Article  Google Scholar 

  28. (28)

    Y. Z. Feng, C. G. He, Y. F. Wen, Y. S. Ye, X. P. Zhou, X. L. Xie, and Y. W. Mai, Compos. Part A: Appl. Sci. Manufact., 103, 74 (2017).

    CAS  Article  Google Scholar 

  29. (29)

    N. Liu, W. Y. Huang, X. D. Zhang, L. Tang, L. Wang, Y. X. Wang, and M. H. Wu, Appl. Catal. B: Environ., 221, 119 (2018).

    CAS  Article  Google Scholar 

  30. (30)

    L. Q. Xu, W. J. Yang, K. G. Neoh, E. T. Kang, and G. D. Fu, Macromolecules, 43, 8336 (2010).

    CAS  Article  Google Scholar 

  31. (31)

    W. H. Ye, Y. Chen, Y. X. Zhou, J. J. Fu, W. C. Wu, D. Q. Gao, F. Zhou, C. M. Wang, and D. S. Xue, Electrochim. Acta, 142, 18 (2014).

    CAS  Article  Google Scholar 

  32. (32)

    D. Q. Gao, Y. G. Liu, P. T. Liu, M. S. Si, and D. S. Xue, Sci. Rep., 6, 35768 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. (33)

    Z. N. Li, C. J. Wu, K. Zhao, B. Peng, and Z. W. Deng, Colloids Surf. A: Phys. Eng. Asp., 470, 80 (2015).

    CAS  Article  Google Scholar 

  34. (34)

    S. Tang, L. J. Qian, Y. Qiu, and Y. P. Dong, Polym. Degrad. Stab., 153, 210 (2018).

    CAS  Article  Google Scholar 

  35. (35)

    W. H. Chen, P. J. Liu, L. Z. Min, Y. M. Zhou, Y. Liu, Q. Wang, and W. F. Duan, Nano-Micro Lett., 3, 39 (2018).

    Article  CAS  Google Scholar 

  36. (36)

    Y. G. Liu, P. T. Liu, C. Q. Sun, T. T. Wang, K. Tao, and D. Q. Gao, Appl. Phys. Lett., 110, 222403 (2017).

    Article  CAS  Google Scholar 

  37. (37)

    L. L. Xu, L. H. Xiao, P. Jia, K. Goossens, P. Liu, H. Li, C. G. Cheng, Y. Huang, W. Bielawski, and J. X. Gen, ACS Appl. Mater. Interfaces, 9, 26392 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. (38)

    W. C. Wei, C. Deng, S. C. Huang, Y. X. Wei, and Y. Z. Wang, J. Mater. Chem. A, 18, 2012 (2018).

    Google Scholar 

  39. (39)

    F. Shalchy and N. Rahbar, ACS Appl. Mater. Interfaces, 7, 17278 (2015).

    CAS  PubMed  Article  Google Scholar 

  40. (40)

    A. Cayla, F. Rault, S. Giraud, F. Salaün, V. Fierro, and A. Celzard, Polymers, 8, 331 (2016).

    PubMed Central  Article  CAS  Google Scholar 

  41. (41)

    W. H. Cheng, Y. Zhang, W. X. Tian, J. J. Liu, J. Y. Lu, B. B. Wang, W. Y. Xing, and Y. Hu, Ind. Eng. Chem. Res., 59, 14025 (2020).

    CAS  Article  Google Scholar 

  42. (42)

    A. Keshavarzian, M. N. Haghighi, F. A. Taromi, and H. Abedini, Polym. Degrad. Stab., 180, 109310 (2020).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The research was financially supported by NSFC (52063026, 21563026), the Program for Changjiang Scholars and Innovative Research Team in University (IRT15R56), the Innovation Team Basic Scientific Research Project of Gansu Province (1606RJIA324), and the Science and Technology Program of Gansu Province (19JR2RA020). We also thank the Key Laboratory of Eco-functional Polymer Materials (Northwest Normal University), Ministry of Education, and the Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, for financial support.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Zhiwang Yang or Ziqiang Lei.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, L., Wang, H., Hua, F. et al. Flame Retardancy of Epoxy Resin Improved by Graphene Hybrid Containing Phosphorous, Boron, Nitrogen and Silicon Elements. Macromol. Res. 29, 625–635 (2021). https://doi.org/10.1007/s13233-021-9074-8

Download citation

Keywords

  • flame retardancy
  • epoxy resin
  • graphene oxide
  • g-C3N4
  • ODOPB
  • hybrid materials