Skip to main content
Log in

Flame Retardancy of Epoxy Resin Improved by Graphene Hybrid Containing Phosphorous, Boron, Nitrogen and Silicon Elements

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

An effective ternary organic-inorganic composite flame retardant of reduced graphene oxide-poly-dopamine@graphitic carbon nitride@10-(2,5-dihydroxyphenyl)-10-H-9-oxa-10-phosphaphenanthrene-10-oxide (RGO-PDA@g-C3N4@ODOPB) was successfully fabricated by co-precipitation method. Its property concerning the intrinsic flame retardancy and the mechanical performance was well studied when it was used as co-additives in combination with ammonium polyphosphate (APP) in epoxy resin (EP) samples. The surface morphology and the structure of RGO-PDA@g-C3N4@ODOPB were characterized by SEM, and the molecular structure and compositions were investigated by FT-IR, powder XRD and 1H NMR. TGA, limit oxygen index (LOI), vertical burning test (UL-94), cone calorimeter test, and SEM were also used to investigate the thermal properties and flame retardancy of materials. As expected, the flame retardancy of EP was significantly heightened after adding of RGO-PDA@g-C3N4@ODOPB composites. It showed that with the 20% adding of RGO-PDA@g-C3N4@ODOPB/APP into EP led to the decreasing of the peak heat release rate and the total heat release at 78% and 62.5%, respectively. Meanwhile, the LOI value of the EP composites was as high as 29% and reached UL-94 V-0 rate. It was deemed that the excellent flame retardancy was attributed to the forming of compact and stable carbon layer, which was being catalytic carbonization by APP existed in the RGO-PDA@g-C3N4@ODOPB/APP composites. At the same time, the non-combustible gas released from thermal cracking of g-C3N4 during the combustion also benefited the flame retardant performance of EP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Zhou, S. Qiu, W. Y. Xing, C. S. R. Gangireddy, Z. Gui, and Y. Hu, ACS Appl. Mater. Interfaces, 34, 29147 (2017).

    Article  CAS  Google Scholar 

  2. C. Liu, T. Chen, C. H. Yuan, C. F. Song, Y. Chang, G. R. Chen, Y. T. Xu, and L. Z. Dai, J. Mater. Chem. A, 4, 3462 (2016).

    Article  CAS  Google Scholar 

  3. X. Guo, H. Wang, D. Ma, J. He, and Z. Q. Lei, J. Appl. Polym. Sci.., 135, 46410 (2018).

    Article  CAS  Google Scholar 

  4. M. Venier, A. Salamova, and R. A. Hites, Accounts Chem. Res., 48, 1853 (2015).

    Article  CAS  Google Scholar 

  5. H. K. Lee, H. Kang, S. Lee, S. Kim, K. Choi, and H. B. Moon, Sci. Total Environ., 719, 137386 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Z. W. Yang, X. X. Liang, X. Q. Xu, C. Lei, X. L. He, T. Song, W. Y. Huo, H. C. Ma, and Z. Q. Lei, RSC Adv., 70, 65921 (2016).

    Article  CAS  Google Scholar 

  7. J. Dumont, U. Martinez, K. Artyushkova, G. Purdy, A. Dattelbaum, P. Zelenay, A. Mohite, P. Atanassov, and G. Gupta, ACS Appl. Nano Mater., 2, 1675 (2019).

    Article  CAS  Google Scholar 

  8. A. Capezza, R. Andersson, V. Ström, Q. Wu, B. Sacchi, S. Farris, M. Hedenqvist, and R. Olsson, ACS Omega, 4, 3458 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. L. Lingamdinne, J. Koduru, and R. R. Karri, J. Environ. Manage., 231, 622 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. X. L. Wang, X. Cheng, Y. Y. Li, G. Li, and J. Xu, Solar Energy, 179, 128 (2019).

    Article  CAS  Google Scholar 

  11. X. L. Yu, X. D. Chen, X. Ding, X. P. Chen, X. Yu, and X. Zhao, Sens. Actuators B Chem., 283, 761 (2019).

    Article  CAS  Google Scholar 

  12. M. Goumri, B. Lucas, B. Ratier, and M. Baitoul, Sens. Actuators B Chem., 23, 1097 (2018).

    Google Scholar 

  13. R. Khose, P. Wadekar, D. Pethsangave, G. Chakraborty, A. Ray, and S. Some, Chemosphere, 246, 125785 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. W. H. Chen, P. J. Liu, L. Z. Min, Y. M. Zhou, Y. Liu, Q. Wang, and W. F. Duan, Nano-Micro Lett., 10, 39 (2018).

    Article  CAS  Google Scholar 

  15. L. Y. Dong, C. G. Hu, L. Song, X. K. Huang, N. Chen, and L. T. Qu, Adv. Funct. Mater., 26, 1470 (2016).

    Article  CAS  Google Scholar 

  16. W. Z. Xu, B. L. Zhang, X. L. Wang, G. S. Wang, and D. Ding, J. Hazard. Mater., 343, 364 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Y. B. Hou, S. L. Qiu, Y. Hu, C. K. Kundu, Z. Gui, and W. Z. Hu, ACS Appl. Mater. Interfaces, 10, 8359 (2018).

    Article  CAS  Google Scholar 

  18. Y. Z. Feng, J. Hu, Y. Xue, C. G. He, X. P. Zhou, X. L. Xie, Y. S. Ye, and Y. W. Mai, ACS Appl. Mater. Interfaces, 10, 21628 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Q. Wu, L. X. Gong, Y. Li, C. F. Cao, L. C. Tang, L. B. Wu, L. Zhao, G. D. Zhang, S. N. Li, J. F. Gao, Y. J. Li, and Y. W. Mai, ACS Nano, 12, 416 (2017).

    Article  PubMed  CAS  Google Scholar 

  20. H. Kim, D. W. Kim, V. Vasagar, H. Ha, S. Nazarenko, and C. J. Ellison, Adv. Funct. Mater., 28, 1803172 (2018).

    Article  CAS  Google Scholar 

  21. H. X. Shao, X. Zhao, Y. B. Wang, R. Mao, Y. Wang, M. Qiao, and Y. F. Zhu, Appl. Catal. B: Environ., 218, 810 (2017).

    Article  CAS  Google Scholar 

  22. Y. Y. Wang, W. J. Yang, X. J. Chen, J. Wang, and Y. F. Zhu, Appl. Catal. B: Environ., 220, 337 (2018).

    Article  CAS  Google Scholar 

  23. L. L. Qu, N. Wang, H. Xu, W. P. Wang, Y. Liu, L. Kuo, T. P. Yadav, L. J. Wu, J. Joyner, Y. H. Song, H. T. Li, J. Lou, R. Vajtai, and P. Ajayal, Adv. Funct. Mater., 27, 1701714 (2017).

    Article  CAS  Google Scholar 

  24. Y. L. Zhu, Y. Q. Shi, Z. Q. Huang, L. J. Duan, Q. L. Tai, and Y. Hu, Compos. Part A: Appl. Sci. Manufact., 99, 149 (2017).

    Article  CAS  Google Scholar 

  25. Y. B. Hou, L. X. Liu, S. L. Qiu, X. Zhou, Z. Gui, and Y. Hu, ACS Appl. Mater. Interfaces, 10, 8274 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Z. J. Wu, J. L. Li, Y. P. Chen, Z. Wang, and S. C. Li, J. Appl. Polym. Sci., 131, 40848 (2014).

    Google Scholar 

  27. B. Liang, J. Cao, X. D. Hong, and C. S. Wang, J. Appl. Polym. Sci., 128, 2759 (2013).

    Article  CAS  Google Scholar 

  28. Y. Z. Feng, C. G. He, Y. F. Wen, Y. S. Ye, X. P. Zhou, X. L. Xie, and Y. W. Mai, Compos. Part A: Appl. Sci. Manufact., 103, 74 (2017).

    Article  CAS  Google Scholar 

  29. N. Liu, W. Y. Huang, X. D. Zhang, L. Tang, L. Wang, Y. X. Wang, and M. H. Wu, Appl. Catal. B: Environ., 221, 119 (2018).

    Article  CAS  Google Scholar 

  30. L. Q. Xu, W. J. Yang, K. G. Neoh, E. T. Kang, and G. D. Fu, Macromolecules, 43, 8336 (2010).

    Article  CAS  Google Scholar 

  31. W. H. Ye, Y. Chen, Y. X. Zhou, J. J. Fu, W. C. Wu, D. Q. Gao, F. Zhou, C. M. Wang, and D. S. Xue, Electrochim. Acta, 142, 18 (2014).

    Article  CAS  Google Scholar 

  32. D. Q. Gao, Y. G. Liu, P. T. Liu, M. S. Si, and D. S. Xue, Sci. Rep., 6, 35768 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Z. N. Li, C. J. Wu, K. Zhao, B. Peng, and Z. W. Deng, Colloids Surf. A: Phys. Eng. Asp., 470, 80 (2015).

    Article  CAS  Google Scholar 

  34. S. Tang, L. J. Qian, Y. Qiu, and Y. P. Dong, Polym. Degrad. Stab., 153, 210 (2018).

    Article  CAS  Google Scholar 

  35. W. H. Chen, P. J. Liu, L. Z. Min, Y. M. Zhou, Y. Liu, Q. Wang, and W. F. Duan, Nano-Micro Lett., 3, 39 (2018).

    Article  CAS  Google Scholar 

  36. Y. G. Liu, P. T. Liu, C. Q. Sun, T. T. Wang, K. Tao, and D. Q. Gao, Appl. Phys. Lett., 110, 222403 (2017).

    Article  CAS  Google Scholar 

  37. L. L. Xu, L. H. Xiao, P. Jia, K. Goossens, P. Liu, H. Li, C. G. Cheng, Y. Huang, W. Bielawski, and J. X. Gen, ACS Appl. Mater. Interfaces, 9, 26392 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. W. C. Wei, C. Deng, S. C. Huang, Y. X. Wei, and Y. Z. Wang, J. Mater. Chem. A, 18, 2012 (2018).

    Google Scholar 

  39. F. Shalchy and N. Rahbar, ACS Appl. Mater. Interfaces, 7, 17278 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. A. Cayla, F. Rault, S. Giraud, F. Salaün, V. Fierro, and A. Celzard, Polymers, 8, 331 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  41. W. H. Cheng, Y. Zhang, W. X. Tian, J. J. Liu, J. Y. Lu, B. B. Wang, W. Y. Xing, and Y. Hu, Ind. Eng. Chem. Res., 59, 14025 (2020).

    Article  CAS  Google Scholar 

  42. A. Keshavarzian, M. N. Haghighi, F. A. Taromi, and H. Abedini, Polym. Degrad. Stab., 180, 109310 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was financially supported by NSFC (52063026, 21563026), the Program for Changjiang Scholars and Innovative Research Team in University (IRT15R56), the Innovation Team Basic Scientific Research Project of Gansu Province (1606RJIA324), and the Science and Technology Program of Gansu Province (19JR2RA020). We also thank the Key Laboratory of Eco-functional Polymer Materials (Northwest Normal University), Ministry of Education, and the Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiwang Yang or Ziqiang Lei.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Wang, H., Hua, F. et al. Flame Retardancy of Epoxy Resin Improved by Graphene Hybrid Containing Phosphorous, Boron, Nitrogen and Silicon Elements. Macromol. Res. 29, 625–635 (2021). https://doi.org/10.1007/s13233-021-9074-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-021-9074-8

Keywords

Navigation