Skip to main content

Nanostructured Polymer Electrolytes for Lithium-Ion Batteries

Abstract

The lithium-ion batteries (LIBs) have been extensively developed for improving high energy density, safety, stable lifespans, and cost-effectiveness, which are essential in next-generation mobile electronic devices including cell phone, drone, and electrical vehicles. Polymer electrolytes (PEs) are one of the key components for advanced LIBs with better safety and high energy density. Thus far, several cutting-edge PEs with various structures and functionalities have been developed. In this article, we have summarized recent progress in polymer electrolytes for high-performance LIBs. At first, the ion transport mechanisms, mechanical properties of solid polymer electrolytes and gel polymer electrolytes are discussed. Then, the nanostructured polymeric films as advanced polymer electrolytes will be discussed including lithium-ion conductivity, mechanical properties, and processibility. Finally, we will discuss remaining challenges and future research direction of the nanostructured polymer electrolytes for high-performance LIBs.

This is a preview of subscription content, access via your institution.

References

  1. D. E. Fenton, J. M. Parker, and P. V. Wright, Polymer, 14, 589 (1973).

    CAS  Article  Google Scholar 

  2. M. Armand, Solid State Ion., 10, 745 (1983).

    Article  Google Scholar 

  3. M. B. Armand, Ann. Rev. Mater. Sci., 16, 245 (1986).

    CAS  Article  Google Scholar 

  4. W. H. Meyer, Adv. Mater., 10, 439 (1998).

    CAS  PubMed  Article  Google Scholar 

  5. M. Li, C. Wang, Z. Chen, K. Xu, and J. Lu, Chem. Rev., 120, 6783 (2020).

    CAS  PubMed  Article  Google Scholar 

  6. S. Chen, K. Wen, J. Fan, Y. Bando, and D. Golberg, J. Mater. Chem. A, 6, 11631 (2018).

    CAS  Article  Google Scholar 

  7. P. Fan, H. Liu, V. Marosz, N. T. Samuels, S. L. Suib, L. Sun, and L. Liao, Adv. Funct. Mater., 31, 2101380 (2021).

    CAS  Article  Google Scholar 

  8. F. Wu, J. Maier, and Y. Yu, Chem. Soc. Rev., 49, 1569 (2020).

    CAS  PubMed  Article  Google Scholar 

  9. H. Jia, H. Onishi, N. von Aspern, U. Rodehorst, K. Rudolf, B. Billmann, R. Wagner, M. Winter, and I. Cekic-Laskovic, J. Power Sources, 397, 343 (2018).

    CAS  Article  Google Scholar 

  10. N. Verdier, D. Lepage, R. Zidani, A. Prébé, D. Aymé-Perrot, C. Pellerin, M. Dollé, and D. Rochefort, ACS Appl. Energy Mater., 3, 1099 (2020).

    CAS  Article  Google Scholar 

  11. X. Wang, R. Kerr, F. Chen, N. Goujon, J. M. Pringle, D. Mecerreyes, M. Forsyth, and P. C. Howlett, Adv. Mater., 32, 1905219 (2020).

    CAS  Article  Google Scholar 

  12. E. Glynos, C. Pantazidis and G. Sakellariou, ACS Omega, 5, 2531 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. S. Wang, Q. Zeng, A. Wang, X. Liu, J. Chen, Z. Wang, and L. Zhang, J. Mater. Chem. A, 7, 1069 (2019).

    CAS  Article  Google Scholar 

  14. J. Zhang, B. Sun, X. Huang, S. Chen, and G. Wang, Sci. Rep., 4, 6007 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. T. H. Kang, H. Chae, Y. Ahn, D. Kim, M. Lee, and G. R. Yi, Langmuir, 35, 16624 (2019).

    CAS  PubMed  Article  Google Scholar 

  16. M. Singh, O. Odusanya, G. M. Wilmes, H. B. Eitouni, E. D. Gomez, A. J. Patel, V. L. Chen, M. J. Park, P. Fragouli, H. Iatrou, N. Hadjichristidis, D. Cookson, and N. P. Balsara, Macromolecules, 40, 4578 (2007).

    CAS  Article  Google Scholar 

  17. N. Wu, Y. R. Shi, S. Y. Lang, J. M. Zhou, J. Y. Liang, W. Wang, S. J. Tan, Y. X. Yin, R. Wen, and Y. G. Guo, Angew. Chem. Int. Ed., 58, 18146 (2019).

    CAS  Article  Google Scholar 

  18. C. Cao, Y. Li, S. Chen, C. Peng, Z. Li, L. Tang, Y. Feng, and W. Feng, ACS Appl. Mater. Interfaces, 11, 35683 (2019).

    CAS  PubMed  Article  Google Scholar 

  19. K. Xu, Chem. Rev., 104, 4303 (2004).

    CAS  PubMed  Article  Google Scholar 

  20. W. S. Young, W. F. Kuan, and T. H. Epps, J. Polym. Sci. B: Polym. Phys., 52, 1 (2014).

    CAS  Article  Google Scholar 

  21. W. M. Wang, Advanced Materials Research, 571, 13 (2012).

    CAS  Article  Google Scholar 

  22. M. Petrowsky and R. Frech, J. Phys. Chem. B, 113, 5996 (2009).

    CAS  PubMed  Article  Google Scholar 

  23. R. C. Agrawal and G. P. Pandey, J. Phys. D: Appl. Phys., 41, 223001 (2008).

    Article  CAS  Google Scholar 

  24. M. A. Ratner, P. Johansson, and D. F. Shriver, MRS Bull., 25, 31 (2000).

    CAS  Article  Google Scholar 

  25. E. Quartarone and P. Mustarelli, Chem. Soc. Rev., 40, 2525 (2011).

    CAS  PubMed  Article  Google Scholar 

  26. R. K. Gupta and H. Rhee, Bull Korean Chem Soc., 38, 356 (2017)

    CAS  Article  Google Scholar 

  27. M. Lee, H. Choi, R. H. Colby and H. W. Gibson, Chem. Mater., 22, 5814 (2010)

    CAS  Article  Google Scholar 

  28. U. H. Choi, M. Lee, S. Wang, W. Liu, K. I. Winey, H. W. Gibson and R. H. Colby, Macromolecules, 45, 3974 (2012).

    CAS  Article  Google Scholar 

  29. H. Wang, L. Sheng, G. Yasin, L. Wang, H. Xu, and X. He, Energy Storage Mater., 33, 188 (2020).

    Article  Google Scholar 

  30. K. M. Diederichsen, UC Berkeley Electronic Theses and Dissertations., 133 (2019).

  31. Y. Wang and W. H. Zhong, ChemElectroChem, 2, 22 (2015).

    Article  CAS  Google Scholar 

  32. A. Bergfelt, G. Hernández, R. Mogensen, M. J. Lacey, J. Mindemark, D. Brandell, and T. M. Bowden, ACS Appl. Polym. Mater., 2, 939 (2020).

    CAS  Article  Google Scholar 

  33. L. Yue, J. Ma, J. Zhang, J. Zhao, S. Dong, Z. Liu, G. Cui, and L. Chen, Energy Storage Mater., 5, 139 (2016).

    Article  Google Scholar 

  34. D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, and G. Wang, Chem., 5, 2326 (2019).

    CAS  Article  Google Scholar 

  35. G. S. MacGlashan, Y. G. Andreev, and P. G. Bruce, Nature, 398, 792 (1999).

    CAS  Article  Google Scholar 

  36. S. K. Fullerton-Shirey and J. K. Maranas, Macromolecules, 42, 2142 (2009).

    CAS  Article  Google Scholar 

  37. K. Deng, J. Qin, S. Wang, S. Ren, D. Han, M. Xiao, and Y. Meng, Small, 14, 1801420 (2018).

    Article  CAS  Google Scholar 

  38. K. Shen and L. M. Hall, Macromolecules, 53, 10086 (2020).

    CAS  Article  Google Scholar 

  39. J. P. Sharma and V. Bharti, IOP Conf. Ser.: Mater. Sci. Eng., 961, 012005 (2020).

    CAS  Article  Google Scholar 

  40. Q. Zhou, J. Ma, S. Dong, X. Li, and G. Cui, Adv. Mater., 31, 1902029 (2019).

    CAS  Article  Google Scholar 

  41. X. Wang, H. Zhu, G. M. A. Girard, R. Yunis, D. R. Macfarlane, D. Mecerreyes, A. J. Bhattacharyya, P. C. Howlett, and M. Forsyth, J. Mater. Chem. A, 5, 23844 (2017).

    CAS  Article  Google Scholar 

  42. Y. Zhu, S. Xiao, Y. Shi, Y. Yang, Y. Hou, and Y. Wu, Adv. Energy Mater., 4, 1300647 (2014).

    Article  CAS  Google Scholar 

  43. M. Guo, B. Zhou, J. Hu, J. Wang, D. He, X. Xie, and Z. Xue, J. Membr. Sci., 564, 663 (2018).

    CAS  Article  Google Scholar 

  44. P. Raghavan, J. Manuel, X. Zhao, D. S. Kim, J. H. Ahn, and C. Nah, J. Power Sources, 196, 6742 (2011).

    CAS  Article  Google Scholar 

  45. G. Chen, F. Zhang, Z. Zhou, J. Li, and Y. Tang, Adv. Energy Mater., 8, 1801219 (2018).

    Article  CAS  Google Scholar 

  46. B. Liu, Y. Huang, H. Cao, L. Zhao, Y. Huang, A. Song, Y. Lin, X. Li, and M. Wang, J. Membr. Sci., 545, 140 (2018).

    CAS  Article  Google Scholar 

  47. M.-H. Ryou, Y. M. Lee, K. Y. Cho, G.-B. Han, J.-N. Lee, D. J. Lee, J. W. Choi, and J.-K. Park, Electrochim. Acta, 60, 23 (2012).

    CAS  Article  Google Scholar 

  48. L. Long, S. Wang, M. Xiao, and Y. Meng, J. Mater. Chem. A, 4, 10038 (2016).

    CAS  Article  Google Scholar 

  49. B. K. Choi, Y. W. Kim, and H. K. Shin, Electrochim. Acta, 45, 1371 (2000).

    CAS  Article  Google Scholar 

  50. J. Bae, Y. Qian, Y. Li, X. Zhou, J. B. Goodenough, and G. Yu, Energy Environ. Sci., 12, 3319 (2019).

    CAS  Article  Google Scholar 

  51. W. Fan, X. Zhang, C. Li, S. Zhao, and J. Wang, ACS Appl. Energy Mater., 2, 4513 (2019).

    CAS  Article  Google Scholar 

  52. R. Yu, S. Li, G. Chen, C. Zuo, B. Zhou, M. Ni, H. Peng, X. Xie, and Z. Xue, Adv. Sci., 6, 1900205 (2019).

    Article  CAS  Google Scholar 

  53. S. Il Kim, H. S. Kim, S. H. Na, S. I. Moon, Y. J. Kim, and N. J. Jo, Electrochim. Acta, 50, 317 (2004).

    Article  CAS  Google Scholar 

  54. S. S. Hwang, C. G. Cho, and H. Kim, Electrochem. Commun., 12, 916 (2010).

    CAS  Article  Google Scholar 

  55. Z. Lin, X. Guo, and H. Yu, Nano Energy, 41, 646 (2017).

    Article  CAS  Google Scholar 

  56. J. R. Nair, I. Shaji, N. Ehteshami, A. Thum, Di. Diddens, A. Heuer, and M. Winter, Chem. Mater., 31, 3118 (2019).

    CAS  Article  Google Scholar 

  57. G. H. Fredrickson, A. J. Liu, and F. S. Bates, Macromolecules, 27, 2503 (1994).

    CAS  Article  Google Scholar 

  58. C. Li, Q. Li, Y. V. Kaneti, D. Hou, Y. Yamauchi, and Y. Mai, Chem. Soc. Rev., 49, 4681 (2020).

    CAS  PubMed  Article  Google Scholar 

  59. O. Ikkala and G. Ten Brinke, Science, 295, 2407 (2002).

    CAS  PubMed  Article  Google Scholar 

  60. J. R. M. Giles, F. M. Gray, J. R. MacCallum, and C. A. Vincent, Polymer, 28, 1977 (1987).

    CAS  Article  Google Scholar 

  61. A. Pelz, T. S. Dörr, P. Zhang, P. W. De Oliveira, M. Winter, H. D. Wiemhöfer, and T. Kraus, Chem. Mater., 31, 277 (2019).

    CAS  Article  Google Scholar 

  62. S. N. Patel, A. E. Javier, K. M. Beers, J. A. Pople, V. Ho, R. A. Segalman, and N. P. Balsara, Nano Lett., 12, 4901 (2012).

    CAS  PubMed  Article  Google Scholar 

  63. Y. Kambe, C. G. Arges, D. A. Czaplewski, M. Dolejsi, S. Krishnan, M. P. Stoykovich, J. J. De Pablo, and P. F. Nealey, Nano Lett., 19, 4684 (2019).

    CAS  PubMed  Article  Google Scholar 

  64. H. D. Nguyen, G. T. Kim, J. Shi, E. Paillard, P. Judeinstein, S. Lyonnard, D. Bresser, and C. Iojoiu, Energy Environ. Sci., 11, 3298 (2018).

    CAS  Article  Google Scholar 

  65. S. Chandra, T. Kundu, S. Kandambeth, R. Babarao, Y. Marathe, S. M. Kunjir, and R. Banerjee, J. Am. Chem. Soc., 136, 6570 (2014).

    CAS  PubMed  Article  Google Scholar 

  66. G. Zhang, Y. L. Hong, Y. Nishiyama, S. Bai, S. Kitagawa, and S. Horike, J. Am. Chem. Soc., 141, 1227 (2019).

    CAS  PubMed  Article  Google Scholar 

  67. K. Jeong, S. Park, G. Y. Jung, S. H. Kim, Y. H. Lee, S. K. Kwak, and S. Y. Lee, J. Am. Chem. Soc., 141, 5880 (2019).

    CAS  PubMed  Article  Google Scholar 

  68. L. Y. Yang, D. X. Wei, M. Xu, Y. F. Yao, and Q. Chen, Angew. Chem. Int. Ed., 53, 3631 (2014).

    CAS  Article  Google Scholar 

  69. S. Choudhury, S. Stalin, Y. Deng, and L. A. Archer, Chem. Mater., 30, 5996 (2018).

    CAS  Article  Google Scholar 

  70. S. Choudhury, R. Mangal, A. Agrawal, and L. A. Archer, Nat. Commun., 6, 10101 (2015).

    CAS  PubMed  Article  Google Scholar 

  71. T. Sato, T. Morinaga, S. Marukane, T. Narutomi, T. Igarashi, Y. Kawano, K. Ohno, T. Fukuda, and Y. Tsujii, Adv. Mater., 23, 4868 (2011).

    CAS  PubMed  Article  Google Scholar 

  72. M. Chintapalli, X. C. Chen, J. L. Thelen, A. A. Teran, X. Wang, B. A. Garetz, and N. P. Balsara, Macromolecules, 47, 5424 (2014).

    CAS  Article  Google Scholar 

  73. D. Cai, F. H. Richter, J. H. J. Thijssen, P. G. Bruce, and P. S. Clegg, Mater. Horiz., 5, 499 (2018).

    CAS  Article  Google Scholar 

  74. S. A. Chopade, S. So, M. A. Hillmyer, and T. P. Lodge, ACS Appl. Mater. Interfaces, 8, 6200 (2016).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgment

We thank Prof. Jong Hyeok Park for his helpful discussion and comments. This research was supported by the National Research Foundation Grant funded by the Korean Government (2018M3D1A1058624) and LG Energy Solutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gi-Ra Yi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yoon, J.H., Cho, WJ., Kang, T.H. et al. Nanostructured Polymer Electrolytes for Lithium-Ion Batteries. Macromol. Res. 29, 509–518 (2021). https://doi.org/10.1007/s13233-021-9073-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-021-9073-9

Keywords

  • lithium-ion batteries
  • polymer electrolytes
  • in-situ polymerization
  • block copolymers
  • ion channel
  • phase separation