Skip to main content
Log in

Esterification of Cellulose Nanofibers with Valeric Acid and Hexanoic Acid

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Cellulose nanofibers (CNFs) have received considerable attention as reinforcing fillers due to their excellent and versatile properties, including physical, morphological, and chemical features. Despite many advantages of CNFs, the hydrophilic nature of CNFs significantly limits their use as fillers. In this study, CNFs were modified by esterification with two kinds of carboxylic acids: valeric acid (VA) and hexanoic acid (HA). The degree of substitutions (DS) of VA-CNF and HA-CNF was 2.78 ± 0.04 and 2.61 ± 0.02, respectively. The dispersibility in an isopropanol solvent showed the controlled hydrophilicity of the modified CNFs. Moreover, the water contact angles of VA-CNF and HA-CNF were 79.2 ± 3.1° and 85.0 ± 1.7°, respectively, while the neat CNF was just 18.9 ± 1.6°. The thermogravimetric analysis (TGA) revealed that the modified CNFs have much better thermal stability than the neat CNFs. Also, the CNF films showed uniform-sized nano-porous structures after the modifications of CNFs. Combined with well-improved hydrophobicity, these multi-faceted results suggest that our esterification technique of CNFs can be applied in a wide range of eco-friendly materials applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Moon, A. Martini, J. Nairn, J. Simonsen, and J. Youngblood, Chem. Soc. Rev., 40, 3941 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. D. Klemm, B. Philpp, T. Heinze, U. Heinze, and W. Wagenknecht, Comprehensive Cellulose Chemistry, Volume 1: Fundamentals and Analytical Methods, Wiley-VCH Verlag GmbH, Weinheim, 1998.

    Book  Google Scholar 

  3. Y. Habibi, Chem. Soc. Rev., 43, 1519 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Y. Wang, X. Wang, Y. Xie, and K. Zhang, Cellulose, 25, 3703 (2018).

    Article  CAS  Google Scholar 

  5. R. M. Brown and D. Montezinos, Proc. Natl. Acad. Sci., 73, 143 (1976).

    Article  CAS  PubMed  Google Scholar 

  6. S. Iwamoto, W. Kai, A. Isogai, and T. Iwata, Biomacromolecules, 10, 2571 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. H. Fukuzumi, T. Saito, T. Iwata, Y. Kumamoto, and A. Isogai, Biomacromolecules, 10, 162 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. M. Nogi, S. Iwamoto, A. N. Nakagaito, and H. Yano, Adv. Mater., 21, 1595 (2009).

    Article  CAS  Google Scholar 

  9. A. Dufresne, Curr. Opin. Colloid Interface Sci., 29, 1 (2017).

    Article  CAS  Google Scholar 

  10. W. Li, Q. Wu, X. Zhao, Z. Huang, J. Cao, J. Li, and S. Liu, Carbohydr. Polym., 113, 403 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. J. Trifol, D. Plackett, C. Sillard, P. Szabo, J. Bras, and A. E. Daugaard, Polym. Int., 65, 988 (2016).

    Article  CAS  Google Scholar 

  12. S. Fujisawa, T. Saito, S. Kimura, T. Iwata, and A. Isogai, Biomacromolecules, 14, 1541 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. S. J. Eichhorn, Soft Matter, 7, 303 (2011).

    Article  CAS  Google Scholar 

  14. D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors, D. Gray, and A. Dorris, Angew. Chem. Int. Ed., 50, 5438 (2011).

    Article  CAS  Google Scholar 

  15. E. Lam, K. B. Male, J. H. Chong, A. C. W. Leung, and J. H. T. Luong, Trends Biotechnol., 30, 283 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. S. Berlioz, S. Molina-Boisseau, Y. Nishiyama, and L. Heux, Biomacromolecules, 10, 2144 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. A. Olszewska, P. Eronen, L. Johansson, J. Malho, M. Ankerfors, T. Lindström, J. Ruokolainen, J. Laine, and M. Österberg, Cellulose, 18, 1213 (2011).

    Article  CAS  Google Scholar 

  18. M. V Biyani, E. J. Foster, and C. Weder, ACS Macro Lett., 2, 236 (2013).

    Article  CAS  Google Scholar 

  19. S. Barazzouk and C. Daneault, Cellulose, 19, 481 (2012).

    Article  CAS  Google Scholar 

  20. Y. Habibi, H. Chanzy, and M. R. Vignon, Cellulose, 13, 679 (2006).

    Article  CAS  Google Scholar 

  21. M. Andresen, P. Stenstad, T. Møretrø, S. Langsrud, K. Syverud, L. Johansson, and P. Stenius, Biomacromolecules, 8, 2149 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. N. Ljungberg, C. Bonini, F. Bortolussi, C. Boisson, L. Heux, and Cavaillé, Biomacromolecules, 6, 2732 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. S. Eyley and W. Thielemans, Nanoscale, 6, 7764 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. H. Yuan, Y. Nishiyama, M. Wada, and S. Kuga, Biomacromolecules, 7, 696 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. L. Huang, Q. Wu, Q. Wang, and M. Wolcott, ACS Sustain. Chem. Eng., 7, 15920 (2019).

    Article  CAS  Google Scholar 

  26. V. G. Gorade, A. Kotwal, B. U. Chaudhary, and R. D. Kale, J. Polym. Res., 26, 217 (2019).

    Article  CAS  Google Scholar 

  27. J. J. Blaker, K.-Y. Lee, X. Li, A. Menner, and A. Bismarck, Green Chem., 11, 1321 (2009).

    Article  CAS  Google Scholar 

  28. S. Fujisawa, Y. Okita, T. Saito, E. Togawa, and A. Isogai, Cellulose, 18, 1191 (2011).

    Article  CAS  Google Scholar 

  29. Y. Habibi, L. A. Lucia, and O. J. Rojas, Chem. Rev., 110, 3479 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. B. Y. Yang and R. Montgomery, Starch — Stärke, 58, 520 (2006).

    Article  CAS  Google Scholar 

  31. S. Park, J. O. Baker, M. E. Himmel, P. A. Parilla, and D. K. Johnson, Biotechnol. Biofuels, 3, 10 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. N. Manhas, K. Balasubramanian, P. Prajith, P. Rule, and S. Nimje, RSC Adv., 5, 23999 (2015).

    Article  CAS  Google Scholar 

  33. S. Tanaka, T. Iwata, and M. Iji, ACS Sustain. Chem. Eng., 5, 1485 (2017).

    Article  CAS  Google Scholar 

  34. C. M. Lee, J. D. Kubicki, B. Fan, L. Zhong, M. C. Jarvis, and S. H. Kim, J. Phys. Chem. B, 119, 15138 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. T. Imai and J. Sugiyama, Macromolecules, 31, 6275 (1998).

    Article  CAS  Google Scholar 

  36. E. Gómez-Ordóñez and P. Rupérez, Food Hydrocoll., 25, 1514 (2011).

    Article  CAS  Google Scholar 

  37. T. A. Dankovich and Y.-L. Hsieh, Cellulose, 14, 469 (2007).

    Article  CAS  Google Scholar 

  38. N. Vlachos, Y. Skopelitis, M. Psaroudaki, V. Konstantinidou, A. Chatzilazarou, and E. Tegou, Anal. Chim. Acta, 573-574, 459 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. H. Marubayashi, K. Yukinaka, Y. Enomoto-Rogers, A. Takemura, and T. Iwata, Carbohydr. Polym., 103, 427 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. S. Thiebaud-Roux, Valorisation Chimique de Domposés Lignocellulosiques: Obtention de Nouveaux Matériaux, Ph. D. Thesis, Institut National Polytechnique de Toulouse, 1995.

  41. X. Wen, H. Wang, Y. Wei, X. Wang, and C. Liu, Carbohydr. Polym., 168, 247 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. J. E. Sealey, G. Samaranayake, J. G. Todd, and W. G. Glasser, J. Polym. Sci. Part B Polym. Phys., 34, 1613 (1996).

    Article  CAS  Google Scholar 

  43. N. G. V Fundador, Y. Enomoto-Rogers, A. Takemura, and T. Iwata, Carbohydr. Polym., 87, 170 (2012).

    Article  CAS  Google Scholar 

  44. C. J. Maim, J. W. Mench, D. L. Kendall, and G. D. Hiatt, Ind. Eng. Chem., 43, 684 (1951).

    Article  Google Scholar 

  45. H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, Fuel, 86, 1781 (2007).

    Article  CAS  Google Scholar 

  46. Y.-C. Lin, J. Cho, G. A. Tompsett, P. R. Westmoreland, and G. W. Huber, J. Phys. Chem. C, 113, 20097 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bong Sup Shim.

Additional information

Supporting information

Information is available regarding deconvolution of XRD pattern for untreated CNF, 1H NMR spectra of DA-CNF under various reaction, DS (degree of substitution) of VA-CNF, HA-CNF, and DA-CNF under various conditions, 1H NMR spectra and DS of VA-CNF and HA-CNF under longer reaction time, and TEM images of neat CNF, VA-CNF, and HA-CNF under 50 °C for 60 min. The materials are available via Internet at http://www.springer.com/13233.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgment: This work was funded by the Inha University Research Program.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Her, K., Jeon, S.H., Lee, S. et al. Esterification of Cellulose Nanofibers with Valeric Acid and Hexanoic Acid. Macromol. Res. 28, 1055–1063 (2020). https://doi.org/10.1007/s13233-020-8146-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8146-5

Keywords

Navigation