Poly(phenylene sulfide) Graphite Composites with Graphite Nanoplatelets as a Secondary Filler for Bipolar Plates in Fuel Cell Applications


Graphite nanoplatelets (GNPs) have been used as a secondary filler to improve the electrical conductivity of poly(phenylene sulfide) (PPS)/graphite composites for use as bipolar plates in fuel cells, and the effects of adding small quantities of GNPs on the electrical, thermal, and mechanical properties of PPS/GNP/graphite composites have been extensively studied. The GNPs were compounded with PPS to produce master batch (MB) chips that were further ground to fine MB powder (MBg). PPS/MBg/graphite powders were compressed to fabricate 10-mm thick square samples. Composites containing a large quantity of graphite (~80 wt%) were then tested for use as a bipolar plate in phosphoric acid fuel cells. When 5 wt% GNP was added to the PPS/graphite composite, the in-plane electrical conductivity increased almost twofold from 643 to 1340 S·cm−1, the through-plane electrical conductivity increased from 19 to 54 S·cm−1, the through-plane thermal conductivity increased approximately two-fold from 60 to 129 W·(mK)−1, and the flexural strength decreased slightly from 32 to 26 MPa. The fractured surface of the compressed MBg sample revealed well-dispersed GNPs in the PPS matrix, which created electrical pathways and improved the electrical conductivity of the non-conducting PPS matrix material. Thus, the PPS/GNP/graphite composite is a promising system for bipolar plate applications because a higher amount of graphite (~93 wt%) is needed in PPS/graphite composites to reach the same level of electrical conductivity as the PPS/MBg(5 wt%)/graphite (75 wt%) composite, and such a large quantity of graphite is difficult to process and leads to weaker mechanical properties.

This is a preview of subscription content, access via your institution.


  1. (1)

    N. Sammes, R. Bove, and K. Stahl, Curr. Opin. Solid State Mater. Sci., 8, 372 (2004).

    CAS  Article  Google Scholar 

  2. (2)

    X. Chen, Y. Wang, Y. Zhao, and Y. Zhou, Energy, 101, 359 (2016).

    CAS  Article  Google Scholar 

  3. (3)

    R. Pachauri and Y. Chauhan, Electric. Power Energy Syst., 74, 49 (2016).

    Article  Google Scholar 

  4. (4)

    B. Kakati, D. Sathiyamoorthy, and A. Verma, Int. J. Hydrogen Energy, 35, 4185 (2010).

    CAS  Article  Google Scholar 

  5. (5)

    R. Antunes, M. Lopes de Oliveira, and G. Ett, Int. J. Hydrogen Energy, 36, 12474 (2011).

    CAS  Article  Google Scholar 

  6. (6)

    M.-H. Lee, H.-Y. Kim, S.-M. Oh, B.-C. Kim, D.-S. Bang, J.-T. Han, and J.-S. Woo, Int. J. Hydrogen Energy, 43, 21918 (2018).

    CAS  Article  Google Scholar 

  7. (7)

    S. Dhakate, S. Sharma, M. Borah, R. Mathur, and T. Dhami, Energy Fuels, 22, 3329 (2008).

    CAS  Article  Google Scholar 

  8. (8)

    Q. Wang, G. Wen, J. Chen, and D. S. Su, J. Mater. Sci. Technol., 34, 2205 (2018).

    Article  Google Scholar 

  9. (9)

    N.-H. Kim, T. Kuila, K.-M. Kim, S.-H. Nahm, and J.-H. Lee, Polym. Test., 31, 537 (2012).

    CAS  Article  Google Scholar 

  10. (10)

    L. Dicks, J. Power Sources, 156, 128 (2006).

    CAS  Article  Google Scholar 

  11. (11)

    M. Akhtara, A. Sulong, A. Umerc, A. Yousafd, and M. Khane, Ceram. Int., 44, 14457 (2018).

    Article  Google Scholar 

  12. (12)

    K.-S. Oh, S.-I. Heo, J.-C. Yun, Y.-C. Yang, and K.-S. Han, Adv. Compos. Mater., 17, 259 (2012).

    Article  Google Scholar 

  13. (13)

    M.-S. Kim, G.-H. Kang, H.-W. Park, Y.-B. Park, Y.-H. Park, and K.-H. Yoon, J. Nanomater., 2012, 159737 (2012).

    Google Scholar 

  14. (14)

    A. Moisala, Q. Li, I. Kinloch, and A. H. Windle, Compos. Sci. Technol., 66, 1285 (2006).

    CAS  Article  Google Scholar 

  15. (15)

    J. Scholta, B. Rohland, V. Trapp, and U. Focken, J. Power Sources, 84, 231 (1999).

    CAS  Article  Google Scholar 

  16. (16)

    S. R. Dhakatea, R. B. Mathura, B. K. Kakatib, and T. L. Dhami, Int. J. Hydrogen Energy, 32, 4537 (2007).

    Article  Google Scholar 

  17. (17)

    J. Huang, D. G. Baird, and J. E. McGrath, J. Power Sources, 150, 110 (2005).

    CAS  Article  Google Scholar 

  18. (18)

    J.-H. Lee, Y.-K. Jang, C.-E. Hong, N.-H. Kim, P. Li, and H.-K. Lee, J. Power Sources, 193, 523 (2009).

    CAS  Article  Google Scholar 

  19. (19)

    J.-H. Lee, J.-S. Lee, T. Kuila, N.-H. Kim, and D.-S. Jung, Compos. Part B, 51, 98 (2013).

    CAS  Article  Google Scholar 

  20. (20)

    B. T. S. Ramanujam and S. Radhakrishnan, Macromol. Res., 25, 311 (2017).

    CAS  Article  Google Scholar 

  21. (21)

    M. C. Vu, T. S. Tran, Y.-H. Bae, M.-J. Yu, V. C. Doan, J.-H. Lee, T.-K. An, and S.-R. Kim, Macromol. Res., 26, 521 (2018).

    CAS  Article  Google Scholar 

  22. (22)

    P. J. Hall and E. J. Bain, Energy Policy, 36, 4352 (2008).

    Article  Google Scholar 

  23. (23)

    S. L. Candelaria, Y. Shao, W. Zhouc, X. Li, J. Xiao, J.-G. Zhang, Y. Wang, J. Liu, J.-H. Li, and G.-Z. Cao, Nano Energy, 1, 195 (2012).

    CAS  Article  Google Scholar 

  24. (24)

    H. Suherman, A. Bakar Sulong, and J. Sahar, Ceram. Int., 39, 1277 (2013).

    CAS  Article  Google Scholar 

  25. (25)

    N. A. M. Radzuan, A. B. Sulong, M. R. Somalu, A. T. Abdullah, T. Husaini, R. E. Rosli, E. H. Majlan, and M. I. Rosli, Int. J. Hydrogen Energy, 44, 30618 (2019).

    Article  Google Scholar 

  26. (26)

    E. Planes, L. Flandin, and N. Alberola, Energy Procedia, 20, 311 (2012).

    CAS  Article  Google Scholar 

  27. (27)

    S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, Appl. Phys. Lett., 92, 151911 (2008).

    Article  Google Scholar 

  28. (28)

    A. K. Vallabhaneni, D. Singh, H. Bao, J. Murthy, and X. Ruan, Phys. Rev. B, 93, 125432 (2016).

    Article  Google Scholar 

  29. (29)

    D. L. Nika, S. Ghosh, E. P. Pokatilov, and A. A. Balandin, Appl. Phys. Lett., 94, 203103 (2009).

    Article  Google Scholar 

  30. (30)

    H.-B. Zhang, W.-G. Zheng, Q. Yan, Y. Yang, J.-W. Wang, Z.-H. Lu, G.-Y. Ji, and Z.-Z. Yu, Polymer, 51, 1191 (2010).

    CAS  Article  Google Scholar 

  31. (31)

    M. Safdari and M. S. Al-Haik, Carbon, 64, 111 (2013).

    CAS  Article  Google Scholar 

  32. (32)

    J. Li, P.-S. Wong, and J.-K. Kim, Mater. Sci. Eng. A, 483, 660 (2008).

    Article  Google Scholar 

  33. (33)

    B. J. Last and D. J. Thouless, Phys. Rev. Lett., 27, 1719 (1971).

    CAS  Article  Google Scholar 

  34. (34)

    T. Kuila, S. Bose, C.-E. Hong, M. E. Uddin, P. Khanra, N.-H. Kim, and J.-H. Lee, Carbon, 49, 1033 (2011).

    CAS  Article  Google Scholar 

  35. (35)

    A. S. Wajid, S. Das, F. Irin, H. S. Tanvir Ahmed, J. L. Shelburne, D. Parviz, R. J. Fullerton, A. F. Jankowski, R. C. Hedden, and M. J. Green, Carbon, 50, 526 (2012).

    CAS  Article  Google Scholar 

  36. (36)

    P. Potschke, A. R. Bhattacharyya, and A. Janke, Eur. Polym. J., 40, 137 (2004).

    CAS  Article  Google Scholar 

  37. (37)

    H. J. Griesser, D. Youxian, A. E. Hughes, T. R. Gengenbach, and A. W. H. Mau, Langmuir, 7, 2484 (1991).

    CAS  Article  Google Scholar 

  38. (38)

    H. Ma, B. Chu, and B. S. Hsiao, Eur. Polym. J., 87, 398 (2017).

    CAS  Article  Google Scholar 

  39. (39)

    D. G. Brady, J. Appl. Polym. Sci., 20, 2541 (1976).

    CAS  Article  Google Scholar 

  40. (40)

    Y. F. Zhao, M. Xiao, S. J. Wang, X. C. Ge, and Y. Z. Meng, Compos. Sci. Technol., 67, 2528 (2007).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Soo-Young Park.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgment: This work was supported by the National Research Foundation of Korea (NRF-2016M1A2A2937163).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, SH., Woo, J.S. & Park, SY. Poly(phenylene sulfide) Graphite Composites with Graphite Nanoplatelets as a Secondary Filler for Bipolar Plates in Fuel Cell Applications. Macromol. Res. 28, 1010–1016 (2020). https://doi.org/10.1007/s13233-020-8140-y

Download citation


  • graphite
  • composite
  • graphite nanoplate
  • poly(phenylene sulfide)
  • bipolar plate
  • phosphoric acid fuel cell