Skip to main content
Log in

Antimicrobial Activity of Polymeric Microfibers Containing Coix Lacryma-Jobi Extract

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

An Erratum to this article was published on 12 October 2020

This article has been updated

Abstract

Wound dressings are based on the creation of ideal environments for cell mobility, gas exchanges and to promote tissue healing and regeneration, besides controlling bacterial proliferation. Electrospinning is a simple, cheap and common technique used for such purposes and Ecovio®, a polymeric blend based on biocompatible polymers (poly(butylene adipate-co-terephthalate) (PBAT) and poly(lactic acid) (PLA)), is a good example of polymer with unique properties for wound dressing materials development. To ensure antimicrobial properties, Job’s tears (Coix lacrymajobi) extract was incorporated into the material. The obtained fiber mats were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffractometry (DRX), optical microscopy (OM), and microbiological analysis. The interaction among the compounds of the extract and the polymeric matrix was inferred by the increase in the crystallinity degree and thermal stability of the fibers/extract. Also, a decrease in the diameter, roughness, and fiber homogeneity was observed. It happened due to the presence of extract in the fibers. Microbiological analysis (antimicrobial activity against S. aureus) indicated the effectiveness of the fibers/extract in preventing this bacteria growth, demonstrating the potential of this material for wound dressing purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 12 October 2020

    The 8th author���s name should be corrected as follows: Edvani Curti Muniz

References

  1. A. L. R. Pires, A. C. K. Bierhalz, and Â. M. Moraes, Quim. Nova, 38, 957 (2015).

    CAS  Google Scholar 

  2. M. N. Helmus, D. F. Gibbons, and D. Cebon, Toxicol. Pathol., 36, 70 (2008).

    CAS  PubMed  Google Scholar 

  3. W. He and R. Benson, in Applied Plastics Engineering Handbook: Processing, Materials, and Applications, 2nd ed., Elsevier, 2017, pp 145–164.

  4. M. H. F. Santos, A. M. Ribeiro, W. D. Mesquita, and M. F. C. Gurgel, Revista Processos Químicos, 13, 35 (2020).

    Google Scholar 

  5. D. Mondal, M. Griffith, and S. S. Venkatraman, Int. J. Polym. Mater. Polym. Biomater., 65, 255 (2016).

    CAS  Google Scholar 

  6. M. J. Austin and A. M. Rosales, Biomater. Sci., 7, 490 (2019).

    CAS  PubMed  Google Scholar 

  7. M. P. Lutolf and J. A. Hubbell, Nat. Biotechnol., 23, 47 (2005).

    CAS  PubMed  Google Scholar 

  8. M. Naseri-Nosar and Z. M. Ziora, Carbohydr. Polym., 189, 379 (2018).

    CAS  PubMed  Google Scholar 

  9. F. Wang, S. Hu, Q. Jia, and L. Zhang, J. Nanomater., 2020, 8719859 (2020).

    Google Scholar 

  10. T. T. Yuan, A. M. DiGeorge Foushee, M. C. Johnson, A. R. Jockheck-Clark, and J. M. Stahl, Nanoscale Res. Lett., 13, 88 (2018).

    PubMed  PubMed Central  Google Scholar 

  11. J. Adam, J. Couturier, V. Molinié, A. Vieillefond, and M. Sibony, Histopathology, 58, 1064 (2011).

    PubMed  Google Scholar 

  12. S. Amrani, Y. Halimi, and M. Tahiri, GSTF Int. J. Chem. Sci., 1, 47 (2014).

    Google Scholar 

  13. Y. Dong, Y. Zheng, K. Zhang, Y. Yao, L. Wang, X. Li, J. Yu, and B. Ding, Adv. Fiber Mater., doi:https://doi.org/10.1007/s42765-020-00034-y (2020).

  14. N. Huebsch and D. J. Mooney, Nature, 462, 426 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Y. Pilehvar-Soltanahmadi, M. Dadashpour, A. Mohajeri, A. Fattahi, R. Sheervalilou, and N. Zarghami, Mini-Reviews Med. Chem., 18, 414 (2017).

    Google Scholar 

  16. M. Liu, X. P. Duan, Y. M. Li, D. P. Yang, and Y. Z. Long, Mater. Sci. Eng. C, 76, 1413 (2017).

    CAS  Google Scholar 

  17. F. M. Chen and X. Liu, Prog. Polym. Sci., 53, 86 (2016).

    CAS  PubMed  Google Scholar 

  18. X. Liu, L. H. Nielsen, S. N. Kłodzińska, H. M. Nielsen, H. Qu, L. P. Christensen, J. Rantanen, and M. Yang, Eur. J. Pharm. Biopharm., 123, 42 (2018).

    CAS  PubMed  Google Scholar 

  19. N. Liao, A. R. Unnithan, M. K. Joshi, A. P. Tiwari, S. T. Hong, C.-H. Park, and C. S. Kim, Colloids Surf. A: Physicochem. Eng. Asp., 469, 194 (2015).

    CAS  Google Scholar 

  20. M. Amann and O. Minge, in Synthetic Biodegradable Polymers, Springer, Berlin, Heidelberg, 2011, pp 137–172.

    Google Scholar 

  21. D. S. Diningrat, M. Risfandi, N. S. Harahap, A. N. Sari, Kusdianti, and H. K. Siregar, J. Plant Biotechnol., 47, 100 (2020).

    Google Scholar 

  22. C. Juliano, C. L. Pala, and M. Cossu, J. Drug Deliv. Sci. Technol., 17, 177 (2007).

    CAS  Google Scholar 

  23. R. Sharma, G. S. Thakur, B. S. Sanodiya, A. Savita, M. Pandey, A. Sharma, and P. S. Bisen, ISOR J. Pharm. Biol. Sci., 4, 42 (2012).

    Google Scholar 

  24. N. Tabassum and M. Hamdani, Pharmacogn. Rev., 8, 52 (2014).

    PubMed  PubMed Central  Google Scholar 

  25. Bello, O. A., Ayanda, O. I., Aworunse, O. S. & Olukanmi, B. I. Pharmacognosy Reviews. 1, 8 (2018).

    Google Scholar 

  26. M. G. Rosenberger, J. C. de Araujo Amatuzi, A. G. Rosenberger, P. da Costa Zonetti, and R. Paulert, Rev. em Agronegocio e Meio Ambient., 13, 135 (2020).

    Google Scholar 

  27. H. Corke, Y. Huang, and J. S. Li, Coix: Overview, in Reference Module in Food Science, Elsevier, 2016, pp 1–6.

  28. F. Yu, J. Zhang, Y. Li, Z. Zhao, and C. Liu, Chinese Herb. Med., 9, 126 (2017).

    Google Scholar 

  29. S. R. Bhandari, S.-K. Park, Y.-C. Cho, and Y.-S. Lee, African J. Biotechnol., 11, 1872 (2012).

    CAS  Google Scholar 

  30. C.-C. Kuo, M.-C. Shih, Y.-H. Kuo, and W. Chiang, J. Agric. Food Chem., 49, 1564 (2001).

    CAS  PubMed  Google Scholar 

  31. F. Zhu, Trends Food Sci. Technol., 61, 160 (2017).

    CAS  Google Scholar 

  32. Y. Choi, H.-S. Jeong, and J. Lee, Food Chem., 103, 130 (2007).

    CAS  Google Scholar 

  33. T.-T. Wu, A. L. Charles, and T.-C. Huang, Food Chem., 104, 1509 (2007).

    CAS  Google Scholar 

  34. H. Fong, I. Chun, and D. H. Reneker, Polymer (Guildf), 40, 4585 (1999).

    CAS  Google Scholar 

  35. B. Robb and B. Lennox, in Electrospinning for Tissue Regeneration, Woodhead Publishing, Cambridge, 2011, pp 51–66.

    Google Scholar 

  36. E. Mirzaei, S. Sarkar, S. M. Rezayat, and R. Faridi-Majidi, J. Adv. Med. Sci. Appl. Technol., 2, 141 (2016).

    Google Scholar 

  37. D. L. Pavia, G. M. Lampman, G. S. Kriz, and J. A. Vyvyan, Introduction to Spectroscopy, Cengage Learning, Belmont, 2008.

    Google Scholar 

  38. L. F. Wang, J. W. Rhim, and S. I. Hong, LWT - Food Sci. Technol., 68, 454 (2016).

    CAS  Google Scholar 

  39. J. E. Oliveira, L. H. C. Mattoso, W. J. Orts, and E. S. Medeiros, Adv. Mater. Sci. Eng., 2013, 409572 (2013).

    Google Scholar 

  40. T. Kijchavengkul, R. Auras, M. Rubino, E. Alvarado, J. R. C. Montero, and J. M. Rosales, Polym. Degrad. Stab., 95, 99 (2010).

    CAS  Google Scholar 

  41. G. Zehetmeyer, S. Maris, M. Meira, J. M. Scheibel, R. V. B. de Oliveira, A. Brandelli, and R. M. D. Soares, J. Appl. Polym. Sci., 133, 43212 (2016).

    Google Scholar 

  42. J.-T. Yeh, C.-H. Tsou, Y.-M. Li, H.-W. Xiao, C.-S. Wu, W.-L. Chai, Y.-C. Lai, and C.-K. Wang, J. Polym. Res., 19, 9766 (2012).

    Google Scholar 

  43. Y. Cai, J. Lv, and J. Feng, J. Polym. Environ., 21, 108 (2013).

    CAS  Google Scholar 

  44. L. C. Arruda, M. Magaton, R. E. S. Bretas, and M. M. Ueki, Polym. Test., 43, 27 (2015).

    CAS  Google Scholar 

  45. F. Signori, M.-B. Coltelli, and S. Bronco, Polym. Degrad. Stab., 94, 74 (2009).

    CAS  Google Scholar 

  46. R. B. Pereira and A. R. Morales, Polím. Ciênc. Tecnol., 24, 198 (2014).

    CAS  Google Scholar 

  47. T. M. D. Fernandes, M. C. A. M. Leite, A. M. F. de Sousa, C. R. G. Furtado, V. A. Escócio, and A. L. N. da Silva, Polym. Bull., 74, 1713 (2017).

    CAS  Google Scholar 

  48. S. Das, R. Akhter, S. Khandaker, S. Huque, P. Das, Md. R. Anwar, K. A. Tanni, S. Shabnaz, and M. Shahriar, J. Coast. Life Med., 5, 360 (2017).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Cardoso Dragunski.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgments: This study was supported by UNIOESTE (Campus Toledo-PR, Brazil) and UFPR (Sector Palotina-PR, Brazil). The authors would like to thank both Brazilian official agencies CNPq and CAPES for financial support and fellowships.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Breitenbach, G.L., Rosenberger, M.G., Rosenberger, A.G. et al. Antimicrobial Activity of Polymeric Microfibers Containing Coix Lacryma-Jobi Extract. Macromol. Res. 28, 869–876 (2020). https://doi.org/10.1007/s13233-020-8115-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8115-z

Keywords

Navigation