Skip to main content
Log in

Ultrahigh Energy Storage Capacitance and High Breakdown Strength in Biaxially Oriented Poly(vinylidene fluoride) Using a High-Electric-Induced Technique

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The development of high dielectric materials with high energy densities is a crucial research domain in the modern microelectronics and power systems. The objective of this work was to develop the highly ordered crystal orientations and large ferroelectric crystalline β/γ-phases in the biaxially oriented poly(vinylidene fluoride) (BOPVDF). Importantly, a high discharged energy density and high dielectric constant was achieved by using a high-electric-induced technique. A suitable poling electric field was applied to the BOPVDF films in order to enhance the breakdown strength. Remarkably, the BOPVDF film poled at the electric field of 113 MV m−1 achieved an unprecedented discharged energy density of 25.4 J cm−3 at an ultra-high electric field of 550 MV m−1, which is by far the highest value ever achieved in flexible polymer-based capacitor films. Comparatively, the unpoled BOPVDF and commercial biaxially oriented polypropylene (BOPP) exhibited only a discharged energy density of 7.9 J cm−3 and 1.2 J cm−3, respectively. This systematic study provides a new design paradigm to exploit PVDF-based dielectric polymers for capacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. J. Chu, X. Zhou, K. L. Ren, B. Neese, M. R. Lin, Q. Wang, F. Bauer, and Q. M. Zhang, Science, 313, 334 (2006).

    CAS  PubMed  Google Scholar 

  2. Y. Xie, Y. Yu, Y. Feng, W. Jiang, and Z. Zhang, ACS Appl. Mater. Interfaces, 9, 2995 (2017).

    CAS  PubMed  Google Scholar 

  3. X. Zhang, Y. Shen, B. Xu, Q. Zhang, L. Gu, J. Jiang, J. Ma, Y. Lin, and C. W. Nan, Adv. Mater., 28, 2055 (2016).

    CAS  PubMed  Google Scholar 

  4. F. Guan, J. Pan, J. Wang, Q. Wang, and L. Zhu, Macromolecules, 43, 384 (2010).

    CAS  Google Scholar 

  5. G. Yunlong, Y. Gui, and L. Yunqi, Adv. Mater., 22, 4427 (2010).

    Google Scholar 

  6. D. Chong-an, Z. Fengjiao, and Z. Daoben, Adv. Mater., 25, 313 (2013).

    Google Scholar 

  7. X.-Z. Chen, Q. Li, X. Chen, X. Guo, H.-X. Ge, Y. Liu, and Q.-D. Shen, Adv. Funct Mater., 23, 3124 (2013).

    CAS  Google Scholar 

  8. Y. Chen, X. Chen, H. Lu, L. Zhang, Y. Yang, and Q.-D. Shen, Polymer, 143, 281 (2018).

    CAS  Google Scholar 

  9. H. Tang and H. A. Sodano, Nano Lett., 13, 1373 (2013).

    CAS  PubMed  Google Scholar 

  10. M. Rabuffi and G. Picci, IEEE T. Plasma. Sci, 30, 1939 (2002).

    CAS  Google Scholar 

  11. L. A Fredin, Z. Li, M. A. Ratner, M. T. Lanagan, and T. J. Marks, Adv. Mater., 24, 5946 (2012).

    CAS  PubMed  Google Scholar 

  12. W. Xu, G. Yang, L. Jin, J. Liu, Y. Zhang, Z. Zhang, and Z. Jiang, ACS Appl. Mater. Interfaces, 10, 11233 (2018).

    CAS  PubMed  Google Scholar 

  13. A. J. Lovinger, Science, 220, 1115 (1983).

    CAS  PubMed  Google Scholar 

  14. A. J. Lovinger, D. Davis, R. Cais, and J. Kometani, Polymer, 28, 617 (1987).

    CAS  Google Scholar 

  15. F. B. Calleja, A. G. Arche, T. Ezquerra, C. Santa Cruz, F. Batallan, B. Frick, and E. L. Cabarcos, in Structure in Polymers with Special Properties, Springer, 1993, pp 1–48.

    Google Scholar 

  16. G. R. Li, N. Kagami, and H. Ohigashi,J. Appl Phys., 72, 1056 (1992).

    CAS  Google Scholar 

  17. Q. M. Zhang, Science, 280, 2101 (1998).

    CAS  PubMed  Google Scholar 

  18. Q. M. Zhang, Z.-Y. Cheng, and V. Bharti, Appl Phys. A, 70, 307 (2000).

    CAS  Google Scholar 

  19. Z. Zhang and T. C. M. Chung, Macromolecules,40, 783 (2007).

    CAS  Google Scholar 

  20. X. Chenyang, L. Jingye, Y. Chunming, and L. Yongjin, Macromol. Rapid Commun., 37, 1559 (2016).

    Google Scholar 

  21. F. Guan, L. Yang, J. Wang, B. Guan, K. Han, Q. Wang, and L. Zhu, Adv. Funct Mater., 21, 3176 (2011).

    CAS  Google Scholar 

  22. C. Yingxin, T. Xin, S. Jie, W. Xiaoliang, H. Wenbing, and S. Qun-Dong, J. Polym. Sci. Part B: Polym. Phys., 54, 1160 (2016).

    Google Scholar 

  23. B. Mohammadi, A. A. Yousefi, and S. M. Bellah, Polym. Test., 26, 42 (2007).

    CAS  Google Scholar 

  24. L. Yang, J. Ho, E. Allahyarov, R. Mu, and L. Zhu, ACS Appl Mater. Interfaces, 7, 19894 (2015).

    CAS  PubMed  Google Scholar 

  25. H. Xingyi and J. Pingkai, Adv. Mater., 27, 546 (2015).

    Google Scholar 

  26. Y. Li, X. Huang, Z. Hu, P. Jiang, S. Li, and T. Tanaka, ACS Appl. Mater. Interfaces, 3, 4396 (2011).

    CAS  PubMed  Google Scholar 

  27. C. Xing, L. Zhao, J. You, W. Dong, X. Cao, and Y. Li,J. Phys. Chem. B, 116, 8312 (2012).

    CAS  PubMed  Google Scholar 

  28. L. Feihua, L. Qi, C. Jin, L. Zeyu, Y. Guang, L. Yang, D. Lijie, X. Chuanxi, W. Hong, and W. Qing, Adv. Funct. Mater., 27, 1606292 (2017).

    Google Scholar 

  29. Y. X. Chen, Z. X. Cheng, and Q. D. Shen, IEEE Trans. Dielectr. Electr. Insul., 24, 682 (2017).

    CAS  Google Scholar 

  30. Q. Li, K. Han, M. R. Gadinski, G. Z. Zhang, and Q. Wang, Adv. Mater., 26, 6244 (2014).

    CAS  PubMed  Google Scholar 

  31. Q. Meng, W. Li, Y. Zheng, and Z. Zhang, J. Appl Polym. Sci., 116, 2674 (2010).

    CAS  Google Scholar 

  32. R. J. Klein, J. Runt, and Q.-M. Zhang, Macromolecules, 36, 7220 (2003).

    CAS  Google Scholar 

  33. Z. Zhang and T. C. M. Chung, Macromolecules, 40, 9391 (2007).

    CAS  Google Scholar 

  34. L. L. Sun, B. Li, Y. Zhao, G. Mitchell, and W. H. Zhong, Nanotechnology, 21, 305702 (2010).

    CAS  PubMed  Google Scholar 

  35. B. Hahn, J. Wendorff, and D. Y. Yoon, Macromolecules, 18, 718 (1985).

    CAS  Google Scholar 

  36. X. Zhou, X. Zhao, Z. Suo, C. Zou, J. Runt, S. Liu, S. Zhang, and Q. M. Zhang, Appl. Phys. Lett, 94, 162901 (2009).

    Google Scholar 

  37. X. Zhou, B. Chu, B. Neese, M. Lin, Q. M. Zhang, IEEE Trans. Dielectr. Electr Insul, 5, 1133 (2007).

    Google Scholar 

  38. Z. Zhang, Q. Meng, and T. C. Mike Chung, Polymer, 50, 707 (2009).

    CAS  Google Scholar 

  39. J. Li, X. Hu, G. Gao, S. Ding, H. Li, L. Yang, and Z. Zhang, J. Mater. Chem. C, 1, 1111 (2013).

    CAS  Google Scholar 

  40. X. Ren, N. Meng, H. Yan, E. Bilotti, and M. J. Reece, Polymer, 168, 246 (2019).

    CAS  Google Scholar 

  41. L. Wang, H. Luo, X. Zhou, X. Yuan, K. Zhou, and D. Zhang, Compos. Part A, 117, 369 (2019).

    CAS  Google Scholar 

  42. H. Zhu, Z. Liu, and F. Wang, J. Mater. Sci., 52, 5048 (2017).

    CAS  Google Scholar 

  43. Y. F. Wang, L. X. Wang, Q. B. Yuan, J. Chen, Y. J. Niu, X. W. Xu, Y. T. Cheng, B. Yao, Q. Wang, and H. Wang, Nano Energy, 44, 364 (2018).

    CAS  Google Scholar 

  44. Y. X. Chen, Y. F. Yue, J. Liu, J. Shu, A. P. Liu, B. J. Chu, M. H. Xu, W. Z. Xu, T. Chen, J. Zhang, and Q. D. Shen, Phys. Chem. Chem. Phys., 21, 20661 (2019).

    CAS  PubMed  Google Scholar 

  45. Y. X. Chen, L. Zhang, J. H. Liu, X. L. Lin, W. Z. Xu, Y. F. Yue, and Q. D. Shen, Carbon, 144, 15 (2019).

    CAS  Google Scholar 

  46. G. Zhang, Q. Li, H. Gu, S. Jiang, K. Han, M. R. Gadinski, M. A. Haque, Q. Zhang, and Q. Wang, Adv. Mater., 27, 1450 (2015).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingxin Chen.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgments: This work was supported by National Natural Science Foundation of China (Grant No.51703044), the School Science Starting Foundation of Hangzhou Dianzi University (Grant No. KYS205617016), the Opening Project of Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University (No. JDGD-201804), and the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY18E020005).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Du, J., Yu, C. et al. Ultrahigh Energy Storage Capacitance and High Breakdown Strength in Biaxially Oriented Poly(vinylidene fluoride) Using a High-Electric-Induced Technique. Macromol. Res. 28, 573–579 (2020). https://doi.org/10.1007/s13233-020-8073-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8073-5

Keywords

Navigation