Skip to main content
Log in

Direct Solvent-Free Modification of the Inner Wall of the Microchip for Rapid DNA Extraction with Enhanced Capturing Efficiency

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Nucleic acid (NA) extraction and purification are one of the crucial steps for NA-based molecular diagnosis. However, the currently developed methods are still suffering from many issues including long process time, complicated steps, requirement of trained personnel and potential inhibition caused by chaotropic agents and/ or residual reagents. Herein, a surface-modified NA extraction microchip (SNC) is newly fabricated by introducing poly(2-dimethylaminomethyl styrene) (pDMAMS) film engaged directly on the microchip surface via initiated chemical vapor deposition (iCVD) process. The positively charged SNC inner surface could directly capture the negatively charged NA efficiently and its performance is confirmed by fluorescence microscopy and X-ray photoelectron spectroscopy. The developed SNC exhibits the deoxyribonucleic acid (DNA) capture efficiency higher than 92% regardless of initial DNA concentration in range of 20 ng/µL to 0.01 ng/µL. With this versatile DNA-capturing surface, the genomic DNAs of Escherichia Coli O157:H7 (E. coli O157:H7) is successfully extracted directly from cell lysate in the SNC with higher than 90% of efficiency within 30 min. The extraction time can be reduced to at least of 10 min maintaining extraction efficiency higher than 50%. Furthermore, the genomic DNAs are directly extracted using the SNC without loss from various real samples including juice, milk and blood serum. The proposed SNC enables us to perform an one-step NA extraction for molecular diagnosis and has the potential to be integrated into a micro-total analysis in the fields of point-of-care diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. E. Jones, N. G. Patel, M. A. Levy, A. Storeygard, D. Balk, J. L. Gittleman, and P. Daszak, Nature, 451, 990 (2008).

    Article  CAS  Google Scholar 

  2. Centers for Disease Control and Prevention, CDC2016, Vol. 2016.

  3. Y.-W. Tang, G. W. Procop, and D. H. Persing, Clin. Chem., 43, 2021 (1997).

    Article  CAS  Google Scholar 

  4. G. W. Procop, Clin. Infectious Diseases, 45, S99 (2007).

    Article  Google Scholar 

  5. S. C. Tan and B. C. Yiap, J. Biomed. Biotechnol., 2009, 574398 (2009).

    Article  Google Scholar 

  6. J. Kim, M. Johnson, P. Hill, and B. K. Gale, Integr. Biol., 1, 574 (2009).

    Article  CAS  Google Scholar 

  7. J. J. Wright, S. Lee, E. Zaikova, D. A. Walsh, and S. J. Hallam, J. Visualized Experiments: JoVE, 1352 (2009).

    Google Scholar 

  8. W. Cao, C. J. Easley, J. P. Ferrance, and J. P. Landers, Anal. Chem., 78, 7222 (2006).

    Article  CAS  Google Scholar 

  9. S. Petralia, E. L. Sciuto, and S. Conoci, Analyst, 142, 140 (2017).

    Article  CAS  Google Scholar 

  10. C. J. Easley, J. M. Karlinsey, J. M. Bienvenue, L. A. Legendre, M. G. Roper, S. H. Feldman, M. A. Hughes, E. L. Hewlett, T. J. Merkel, J. P. Ferrance, and J. P. Landers, Proc. Natl. Acad. Sci., 103, 19272 (2006).

    Article  CAS  Google Scholar 

  11. Q. Wu, J. M. Bienvenue, B. J. Hassan, Y. C. Kwok, B. C. Giordano, P. M. Norris, J. P. Landers, and J. P. Ferrance, Anal. Chem., 78, 5704 (2006).

    Article  CAS  Google Scholar 

  12. M. A. Witek, M. L. Hupert, D. S. W. Park, K. Fears, M. C. Murphy, and S. A. Soper, Anal. Chem., 80, 3483 (2008).

    Article  CAS  Google Scholar 

  13. J. Kim and B. K. Gale, Lab Chip, 8, 1516 (2008).

    Article  CAS  Google Scholar 

  14. R. J. da Silva, B. G. Maciel, J. C. Medina-Llamas, A. E. Chávez-Guajardo, J. J. Alcaraz-Espinoza, and C. Pinto de Melo, Anal. Biochem., 575, 27 (2019).

    Article  Google Scholar 

  15. N. C. Cady, S. Stelick, and C. A. Batt, Biosens. Bioelectron., 19, 59 (2003).

    Article  CAS  Google Scholar 

  16. C. W. Price, D. C. Leslie, and J. P. Landers, Lab Chip, 9, 2484 (2009).

    Article  CAS  Google Scholar 

  17. H. O. Ham, Z. Liu, K. H. A. Lau, H. Lee, and P. B. Messersmith, Angew. Chem. Int. Ed., 50, 732 (2011).

    Article  CAS  Google Scholar 

  18. K. A. Hagan, C. R. Reedy, M. L. Uchimoto, D. Basu, D. A. Engel, and J. P. Landers, Lab Chip, 11, 957 (2011).

    Article  CAS  Google Scholar 

  19. E. L. Kendall, E. Wienhold, and D. L. DeVoe, Biomicrofluidics, 8, 044109 (2014).

    Article  Google Scholar 

  20. Y. Shin, S. Y. Lim, T. Y. Lee, and M. K. Park, Sci. Rep., 5, 14127 (2015).

    Article  CAS  Google Scholar 

  21. P. Agrawal and K. D. Dorfman, Lab Chip, 19, 281 (2019).

    Article  CAS  Google Scholar 

  22. L. Zhang, B. Ding, Q. Chen, Q. Feng, L. Lin, and J. Sun, TrAC Trends Anal. Chem., 94, 106 (2017).

    Article  Google Scholar 

  23. W. Gan, Y. Gu, J. Han, C.-X. Li, J. Sun, and P. Liu, Anal. Chem., 89, 3568 (2017).

    Article  CAS  Google Scholar 

  24. J. B. You, Y. T. Kim, K. G. Lee, Y. Choi, S. Choi, C. H. Kim, K. H. Kim, S. J. Chang, T. J. Lee, S. J. Lee, and S. G. Im, Adv. Healthc. Mater., 6, 1700642 (2017).

    Article  Google Scholar 

  25. Y. Choi, Y. T. Kim, J. B. You, S. H. Jo, S. J. Lee, S. G. Im, and K. G. Lee, Food Chem., 270, 445 (2019).

    Article  CAS  Google Scholar 

  26. J. B. You, K. Kang, T. T. Tran, H. Park, W. R. Hwang, J. M. Kim, and S. G. Im, Lab Chip, 15, 1727 (2015).

    Article  CAS  Google Scholar 

  27. S.-H. Kim, H. R. Lee, S. J. Yu, M.-E. Han, D. Y. Lee, S. Y. Kim, H.-J. Ahn, M.- J. Han, T.-I. Lee, T.-S. Kim, S. K. Kwon, S. G. Im, and N. S. Hwang, Proc. Natl. Acad. Sci., 112, 15426 (2015).

    Article  CAS  Google Scholar 

  28. B. C. Jang, H. Seong, S. K. Kim, J. Y. Kim, B. J. Koo, J. Choi, S. Y. Yang, S. G. Im, and S.-Y. Choi, ACS Appl. Mater. Interfaces, 8, 12951 (2016).

    Article  CAS  Google Scholar 

  29. S. J. Yu, K. Pak, M. J. Kwak, M. Joo, B. J. Kim, M. S. Oh, J. Baek, H. Park, G. Choi, D. H. Kim, J. Choi, Y. Choi, J. Shin, H. Moon, E. Lee, and S. G. Im, Adv. Eng. Mater., 20, 1700622 (2018).

    Article  Google Scholar 

  30. Y. Liu and L. Shen, Langmuir, 24, 11625 (2008).

    Article  CAS  Google Scholar 

  31. O. Redlich and D. L. Peterson, J. Phys. Chem., 63, 1024 (1959).

    Article  CAS  Google Scholar 

  32. G. R. Belton, Metall. Mater. Trans. B, 7, 35 (1976).

    Article  Google Scholar 

  33. X. Zhang, M. R. Servos, and J. Liu, Langmuir, 28, 3896 (2012).

    Article  CAS  Google Scholar 

  34. A. K. Haghi, L. Pogliani, E. A. Castro, D. Balköse, O. V. Mukbaniani, and C. H. Chia, Applied Chemistry and Chemical Engineering, Volume 4: Experimental Techniques and Methodical Developments, Apple Academic Press, 2017.

    Google Scholar 

  35. C. Schrader, A. Schielke, L. Ellerbroek, and R. Johne, J. Appl. Microbiol., 113, 1014 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyoung G. Lee or Sung Gap Im.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgments: This work was supported by National Research Foundation of Korea (NRF) grants 2017R1A2B3007806 funded by the Ministry of Science and ICT, Republic of Korea and National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (Grant No. 2015M1A2A2056605, Development of encapsulation technology for stable perovskite solar cells). This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (grant number)(2018R1C1B3001553). This work was supported by Nano Open Innovation Lab Cooperation Project of NNFC.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, Y., Kim, Y.T., Lee, S.J. et al. Direct Solvent-Free Modification of the Inner Wall of the Microchip for Rapid DNA Extraction with Enhanced Capturing Efficiency. Macromol. Res. 28, 249–256 (2020). https://doi.org/10.1007/s13233-020-8028-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8028-x

Keywords

Navigation