High-Performance Fluorinated Ethylene-Propylene/Graphite Composites Interconnected with Single-Walled Carbon Nanotubes


Herein, we report a novel method for the fabrication of highly conductive fluorinated ethylene-propylene (FEP)/graphite nanocomposites for high-temperature bipolar plates (BPs) by incorporating the well-dispersed single-walled carbon nanotube (SWCNT) as a secondary filler in the FEP matrix. The SWCNTs were pre-dispersed with FEP powder by sonication in ethanol and subsequently mixed with graphite powder by ball milling. The composite BPs were prepared from the mixed powder by compression molding. The resulting FEP/graphite/SWCNT nanocomposite containing 80 wt% graphite (500 µm particles) and 0.1 wt% SWCNT exhibited high electrical conductivity (210 S cm−1) superior to that of the composite devoid of SWCNTs (120 S cm−1) by modulating the electrical transportation pathways between graphite particles through the SWCNTs. A small amount of the incorporated SWCNTs (0.1 wt%) also improved chemical inertness to phosphoric acid. Hence, the prepared FEP/graphite nanocomposites with SWCNTs as a secondary filler exhibited a robust performance for application as high-temperature BPs for phosphoric acid fuel cells.

This is a preview of subscription content, access via your institution.


  1. (1)

    N. Sammes, R. Bove, and K. Stahl, Curr. Opin. Solid State Mater. Sci., 8, 372 (2004).

    CAS  Article  Google Scholar 

  2. (2)

    R. K. Pachauri and Y. K. Chauhan, Int. J. Elec. Power Energ. Syst., 74, 49 (2016).

    Article  Google Scholar 

  3. (3)

    X. Chen, Y. Wang, Y. Zhao, and Y. Zhou, Energy, 101, 359 (2016).

    CAS  Article  Google Scholar 

  4. (4)

    B. D. Cunningham, J. Huang, and D. G. Baird, Int. Mater. Rev., 52, 1 (2013).

    Article  Google Scholar 

  5. (5)

    Q. Wang, G. D. Wen, J. N. Chen, and D. S. Su, J. Mater. Sci. Technol., 34, 2205 (2018).

    Article  Google Scholar 

  6. (6)

    S. R. Dhakate, S. Shanna, A. Borah, R. B. Mathur, and T. L. Dhami, Energy Fuel., 22, 3329 (2008).

    CAS  Article  Google Scholar 

  7. (7)

    Y. Sung, T.-H Kim, and B. Lee, Marcomol. Res., 24, 143 (2016).

    CAS  Google Scholar 

  8. (8)

    N. H. Kim, T. Kuila, K. M. Kim, S. H. Nahm, and J. H. Lee, Polym. Test., 31, 537 (2012).

    CAS  Article  Google Scholar 

  9. (9)

    K.-Y. Shin, S. Y. Lee, and S.-S. Lee, Marcomol. Res., 24, 170 (2016).

    CAS  Google Scholar 

  10. (10)

    R. B. Mathur, S. R. Dhakate, D. K. Gupta, T. L. Dhami, and R. K. Aggarwal, J. Mater. Process. Technol., 203, 184 (2008).

    CAS  Article  Google Scholar 

  11. (11)

    M. H. Lee, H. Y. Kim, S. M. Oh, B. C. Kim, D. Bang, J. T. Han, and J. S. Woo, Int. J. Hydrogen. Energ., 43, 21918 (2018).

    CAS  Article  Google Scholar 

  12. (12)

    S. Bal and S. S. Samal, Bull. Mater. Sci., 30, 379 (2007).

    CAS  Article  Google Scholar 

  13. (13)

    Y. Y. Huang and E. M. Terentjev, Polymer, 4, 275 (2012).

    Article  Google Scholar 

  14. (14)

    H. C. Hwang, J. S. Woo, and S. Y. Park, Carbohyd Polym, 196, 168 (2018).

    CAS  Article  Google Scholar 

  15. (15)

    C. A. Mitchell, J. L. Bahr, S. Arepalli, J. M. Tour, and R. Krishnamoorti, Macromolecules, 35, 8825 (2002).

    CAS  Article  Google Scholar 

  16. (16)

    P. Pötschke, A. R. Bhattacharyya, and A. Janke, Polymer, 44, 8061 (2003).

    Article  Google Scholar 

  17. (17)

    E. T. Thostenson and T. W. Chou, J. Phys. D. Appl. Phys., 35, L77 (2002).

    CAS  Article  Google Scholar 

  18. (18)

    N. Abbas and H. T. Kim, Marcomol. Res., 24, 1084 (2016).

    CAS  Google Scholar 

  19. (19)

    J. M. Kim, D. H. Kim, J. Kim, J. W. Lee, and W. N. Kim, Marcomol. Res., 25, 190 (2017).

    CAS  Google Scholar 

  20. (20)

    S. Chunhui, Int. J. Hydrogen. Energ., 33, 1035 (2008).

    Article  Google Scholar 

  21. (21)

    S. Dhakate, R. Mathur, B. Kakati, and T. Dhami, Int. J. Hydrogen. Energ., 32, 4537 (2007).

    CAS  Article  Google Scholar 

  22. (22)

    G. L. Che, B. B. Lakshmi, E. R. Fisher, and C. R. Martin, Nature, 393, 346 (1998).

    CAS  Article  Google Scholar 

  23. (23)

    T. W. Odom, J. L. Huang, and C. M. Lieber, Ann. N. Y. Acad. Sci., 960, 203 (2002).

    CAS  Article  Google Scholar 

  24. (24)

    N. Gamze Karsli, S. Yesil, and A. Aytac, Compos. Part B, 63, 154 (2014).

    CAS  Article  Google Scholar 

  25. (25)

    J. H. Lee, Y. K. Jang, C. E. Hong, N. H. Kim, P. Li, and H. K. Lee, J. Power Sources, 193, 523 (2009).

    CAS  Article  Google Scholar 

  26. (26)

    S. Radhakrishnan, B. T. S. Ramanujam, A. Adhikari, and S. Sivaram, J. Power Sources, 163, 702 (2007).

    CAS  Article  Google Scholar 

  27. (27)

    B. Krause, P. Pötschke, E. Ilin, and M. Predtechenskiy, Polymer, 98, 45 (2016).

    CAS  Article  Google Scholar 

  28. (28)

    K. D. Ausman, R. Piner, O. Lourie, R. S. Ruoff, and M. Korobov, J. Phys. Chem. B., 104, 8911 (2000).

    CAS  Article  Google Scholar 

  29. (29)

    H. J. Griesser, D. Youxian, A. E. Hughes, T. R. Gengenbach, and W. H. Mau, Langmuir, 7, 2484 (1991).

    CAS  Article  Google Scholar 

  30. (30)

    H. Ma, B. Chu, and B. S. Hsiao, Eur. Polym. J., 87, 398 (2017).

    CAS  Article  Google Scholar 

  31. (31)

    K. Kalaitzidou, H. Fukushima, and L. T. Drzal, Compos. Part A, 38, 1675 (2007).

    Article  Google Scholar 

  32. (32)

    D. Urk, E. Demir, O. Bulut, D. Cakiroglu, F. C. Cebeci, M. L. Ovecoglu, and H. Cebeci, Compos. Struct., 155, 255 (2016).

    Article  Google Scholar 

  33. (33)

    R. Socher, B. Krause, M. T. Müller, R. Boldt, and P. Pötschke, Polymer, 53, 495 (2012).

    CAS  Article  Google Scholar 

  34. (34)

    P. Pötschke, T. D. Fornes, and D. R. Paul, Polymer, 43, 3247 (2002).

    Article  Google Scholar 

  35. (35)

    A. O’Neill, U. Khan, P. N. Nirmalraj, J. Boland, and J. N. Coleman, J. Phys. Chem. C, 115, 5422 (2011).

    Article  Google Scholar 

  36. (36)

    M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, J. Am. Chem. Soc., 131, 3611 (2009).

    CAS  Article  Google Scholar 

  37. (37)

    S. R. Dhakate, S. Sharma, N. Chauhan, R. K. Seth, and R. B. Mathur, Int. J. Hydrogen. Energ., 35, 4195 (2010).

    CAS  Article  Google Scholar 

  38. (38)

    Y. Show and K. Takahashi, J. Power Sources, 190, 322 (2009).

    CAS  Article  Google Scholar 

  39. (39)

    Q. Yin, K.-N. Sun, A.-J. Li, L. Shao, S.-M. Liu, and C. Sun, J. Power Sources, 175, 861 (2008).

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Research Foundation (NRF-2016M1A2A2937163) and the Korea Institute of Energy Technology Evaluation and Planning of Korea (KETEP-20163010032040).

Author information



Corresponding author

Correspondence to Soo-Young Park.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgments: This work was supported by the National Research Foundation (NRF-2016M1A2A2937163) and the Korea Institute of Energy Technology Evaluation and Planning of Korea (KETEP-20163010032040).

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, HJ., Woo, J.S., Kim, S.H. et al. High-Performance Fluorinated Ethylene-Propylene/Graphite Composites Interconnected with Single-Walled Carbon Nanotubes. Macromol. Res. 27, 1161–1166 (2019). https://doi.org/10.1007/s13233-019-7156-7

Download citation


  • graphite
  • single-walled carbon nanotube
  • fluorinated ethylene-propylene
  • bipolar plate
  • phosphoric acid fuel cell