Skip to main content
Log in

Enhancement of Thermal Conductivity of Poly(methylmethacrylate) Composites at Low Loading of Copper Nanowires

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

We report the synthesis of copper nanowires (CuNWs) and the enhanced thermal conductivity of poly(methylmethacrylate) (PMMA) composites at low-loading fractions of CuNW. The scanning electron microscope, X-ray diffractometer, thermal diffusivity meter, high-resistance meter, universal testing machine, and thermogravimetric analyzer were used to investigate the properties of CuNW/PMMA composites. The elongation strain to failure, toughness, and thermal stability of the PMMA composites significantly increased with increasing contents of CuNW. The CuNW/PMMA composites showed the thermal conductivity and volume resistivity of 0.85 W/mK and 7×1010Ω·m, respectively, at 2.0 wt% of CuNW. The significant improvement of thermal conductivity is attributed to the well-dispersed CuNWs in the PMMA matrix and the high aspect ratio of CuNWs. The experimental results of thermal conductivity fitted well with the Agari model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. C. Doan, M. C. Vu, Md. A. Islam, and S. R. Kim, J. Appl. Polym. Sci., 136, 47377 (2018).

    Google Scholar 

  2. K. Uetani, S. Ata, S. Tomonoh, T. Yamada, M. Yumura, and K. Hata, Adv. Mater., 26, 5857 (2014).

    CAS  PubMed  Google Scholar 

  3. L. C. Sim, S. R. Ramanan, H. Ismail, K. N. Seetharamu, and T. J. Goh, Thermo. Acta, 430, 155 (2005).

    CAS  Google Scholar 

  4. M. C. Vu, T. S. Tran, Y. H. Bae, M. J. Yu, V. C. Doan, J. H. Lee, T. K. An, and S.-R. Kim, Macroml. Res., 26, 521 (2017).

    Google Scholar 

  5. Y. Jiang, M. Li, C. Zhen, Z. Xue, X. Xie, X. Zhou, and Y.-W. Mai, Compos. Sci. Technol., 165, 206 (2018).

    CAS  Google Scholar 

  6. Y.-H. Bae, M.-J. Yu, M. C. Vu, W. K. Choi, and S.-R. Kim, Compos. Sci. Technol., 155, 144 (2018).

    CAS  Google Scholar 

  7. M. C. Vu, G. D. Park, Y. H. Bae, and S. R. Kim, Polym. Korea, 40, 804 (2016).

    CAS  Google Scholar 

  8. C. Yuan, B. Duan, L. Li, B. Xie, M. Huang, and X. Luo, ACS Appl. Mater. Interfaces, 7, 13000 (2015).

    CAS  PubMed  Google Scholar 

  9. M. C. Vu, Y. H. Bae, M. J. Yu, Md. A. Islam, and S.-R. Kim, Compos. Part A, 109, 55 (2018).

    CAS  Google Scholar 

  10. M. C. Vu, G. D. Park, Y. H. Park, M. J. Yu, T. G. An, S. G. Lee, and S. R. Kim, Macromol. Res., 24, 1070 (2016).

    CAS  Google Scholar 

  11. K. Pashayi, H. R. Fard, F. Lai, S. Iruvanti, J. Plawsky, and T. Borca-Tasciuc, J. Appl. Phys., 111, 104310 (2012).

    Google Scholar 

  12. K. Ahn, K. Kim, and J. Kim, Polymer, 76, 313 (2015).

    CAS  Google Scholar 

  13. J. Zhu, Y. Zhang, X. Sun, and L. Guo, RSC Adv., 4, 30610 (2014).

    CAS  Google Scholar 

  14. S. Wang, Y. Cheng, R. Wang, J. Sun, and L. Gao, ACS Appl. Mater. Interfaces, 6, 6481 (2014).

    CAS  PubMed  Google Scholar 

  15. H. Wu, L. Hu, M. W. Rowell, D. Kong, J. J. Cha, J. R. McDonough, J. Zhu, Y. Yang, M. D. McGehee, and Y. Cui, Nano Lett., 10, 4242 (2010).

    CAS  PubMed  Google Scholar 

  16. C. F. Monson and A. T. Woolley, Nano Lett., 3, 359 (2003).

    CAS  Google Scholar 

  17. K. Kim, K. Ahn, H. Ju, and J. Kim, Ind. Eng. Chem. Res., 55, 2713 (2016).

    CAS  Google Scholar 

  18. L. Zhang, J. Yin, W. Yu, M. Wang, and H. Xie, Nanoscale Res. Lett., 12, 462 (2017).

    PubMed  PubMed Central  Google Scholar 

  19. H. Xiang, T. Guo, M. Xu, H. Lu, S. Liu, and G. Yu, ACS Appl. Mater. Interfaces, 1, 3754 (2018).

    CAS  Google Scholar 

  20. Y. Chang, M. L. Lye, and H. C. Zeng, Langmuir, 21, 3746 (2005).

    CAS  PubMed  Google Scholar 

  21. M. Tan and M. D. Balela, MATEC Web of Conferences, 27, 03003 (2015).

    Google Scholar 

  22. A. R. Rathmell, S. M. Bergin, Y.-L. Hua, Z.-Y. Li, and B. J. Wiley, Adv. Mater., 22, 3558 (2010).

    CAS  PubMed  Google Scholar 

  23. A. R. Rathmell and B. J. Wiley, Adv. Mater., 23, 4798 (2011).

    CAS  PubMed  Google Scholar 

  24. M. Jin, G. He, H. Zhang, J. Zeng, Z. Xie, and Y. Xia, Angew. Chem. Int. Ed., 50, 10560 (2011).

    CAS  Google Scholar 

  25. D. Zhang, R. Wang, M. Wen, D. Weng, X. Cui, J. Sun, H. Li, and Y. Lu, J. Am. Chem. Soc., 134, 14283 (2012).

    CAS  PubMed  Google Scholar 

  26. Y. Sun, B. Gates, B. Mayers, and Y. Xia, Nano Lett., 2, 165 (2002).

    CAS  Google Scholar 

  27. F. Qian, P. C. Lan, T. Olson, C. Zhu, E. B. Douss, C. M. Spadaccini, and Y.-J. Han, Chem. Commun., 52, 11627 (2016).

    CAS  Google Scholar 

  28. Y. Zhang, J. Guo, D. Xu, Y. Sun, and F. Yan, Langmuir, 34, 3884 (2018).

    CAS  PubMed  Google Scholar 

  29. G. Han, S. Huan, J. Han, Z. Zhang, and Q. Wu, Materials, 7, 16 (2014).

    CAS  Google Scholar 

  30. D. V. R. Kumar, I. Kim, Z. Zhong, K. Kim, D. Lee, and J. Moon, Phys. Chem. Chem. Phys., 16, 22107 (2014).

    PubMed  Google Scholar 

  31. W. Chen, Z. Wang, C. Zhi, and W. Zhang, Compos. Sci. Technol., 130, 63 (2016).

    CAS  Google Scholar 

  32. A. Lazarenko, L. Vovchenko, Y. Prylutskyy, L. Matzuy, U. Ritter, and P. Scharff, Materialwiss. Werkst., 40, 268 (2009).

    CAS  Google Scholar 

  33. C. Zhang, A. Li, Y.-H. Zhao, S.-L. Bai, and Y.-F. Zhang, Compos. Part B, 135, 201 (2018).

    CAS  Google Scholar 

  34. J. P. Angle, Z. Wang, C. Dames, and M. Mecartney, J. Am. Ceram. Soc., 96, 2935 (2013).

    CAS  Google Scholar 

  35. J. L. Zeng, F. R. Zhu, S. B. Yu, L. Zhu, Z. Cao, L. X. Sun, G.-R. Deng, W.-P. Yan, and L. Zhang, Sol. Energ. Mater. Sol. C., 105, 174 (2012).

    CAS  Google Scholar 

  36. A. Rai and A. L. Moore, Com. Sci. Technol., 144, 70 (2017).

    CAS  Google Scholar 

  37. L. Riviere, A. Lonjon, E. Dantras, C. Lacabanne, P. Olivier, and N. R. Gleizes, Eur. Polym. J., 85, 115 (2016).

    CAS  Google Scholar 

  38. S. A. H. Pour, B. Pourabbas, and M. S. Hosseini, Mater. Chem. Phys., 143, 830 (2014).

    Google Scholar 

  39. H. Yuan, Y. Wang, T. Li, P. Ma, S. Zhang, M. Du, M. Chen, W. Dong, and W. Ming, Compos. Sci. Technol., 164, 153 (2018).

    CAS  Google Scholar 

  40. A. Singhal, K. A. Dubey, Y. K. Bhardwaj, D. Jain, S. Choudhury, and A. K. Tyagi, RSC Adv., 3, 20913 (2013).

    CAS  Google Scholar 

  41. N. H. Mohd Hirmizi, M. A. Bakar, W. L. Tan, N. H. H. Abu Bakar, J. Ismail, and C. H. See, J. Nanomater., 2012, 1 (2012).

    Google Scholar 

  42. S. Y. Yeo, W. L. Tan, M. Abu Bakar, and J. Ismail, Polym. Degrad. Stab., 95, 1299 (2010).

    CAS  Google Scholar 

  43. L. M. Gorghiu, S. Jipa, T. Zaharescu, R. Setnescu, and I. Mihalcea, Polym. Degrad. Stab., 84, 7 (2004).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Ryong Kim.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgments: The support of The Leading Human Resource Training Program of Regional Neo Industry (No. 2016H1D 5A1908330) and The Basic Science Program (No. 2017R1A2B4005200) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science ICT is highly appreciated.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thieu, N.A.T., Vu, M.C., Lee, E.S. et al. Enhancement of Thermal Conductivity of Poly(methylmethacrylate) Composites at Low Loading of Copper Nanowires. Macromol. Res. 27, 1117–1123 (2019). https://doi.org/10.1007/s13233-019-7155-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-019-7155-8

Keywords

Navigation