A Study of Silica Reinforced Rubber Composites with Eco-Friendly Processing Aids for Pneumatic Tires

  • Dongju Lee
  • Sung Ho SongEmail author


The conventional carbon black filler, used in tread formulations, is being replaced with silica with the development of “green tires” in the tire industry. For this, the addition of a processing aid containing zinc ion was required as a dispersing agent and lubricant However, zink being a heavy metal, zinc-free processing aids (ZFAs) are needed to satisfy global environmental issues. Therefore, this study pre sented a series of catalytically synthesized ZFAs and studied the effects of replacing “Y” zinc-containing processing aids (ZCAs) in a silica tread compounds. Interestingly, the rubber composite replacing ZCAs with ZFAs in 2 phr (parts per hundred rubber) improved both its tensile strength and elongation by as much as 31% and 20%, respectively. In addition, the rubber compounds with ZFAs exhibited a two-fold i enhancement in fatigue properties over those with ZCAs. Furthermore, pneumatic tires were fabricated from the rubber compounds containing ZFAs and compared against tires with ZCAs. The tires containing ZFAs rubber composite showed enhanced dry and wet braking and rolling resistance due to enhanced dispersion of silica in the rubber matrix. These results show that rubber composites prepared with ZFAs maybe promising in tire engineering applications.


zinc-free processing aids silica tire styrene butadiene rubber mechanical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017-0902-01). The research was supported by the International Science and Business Belt Program through the Ministry of Science and ICT (2015-DD-RD-0068-05).

Supplementary material

13233_2019_7125_MOESM1_ESM.pdf (1.1 mb)
Supplementary material, approximately 1.14 MB.


  1. (1).
    S. H. Song, J. Appl. Polym. Sci., 134, 45376 (2017).CrossRefGoogle Scholar
  2. (2).
    S. H. Song, Macromol. Chem. Phys, 217, 2617 (2016).CrossRefGoogle Scholar
  3. (3).
    S. P. Lee, O. S. Kwon, Y. G. Kang and S. H. Song Plast Rubber Compos. 45, 382 (2016).CrossRefGoogle Scholar
  4. (4).
    Y. Li, B. Han, L. Liu, F. Zhang, L. Zhang S. Wen, Y. Lu, H. Yang, and J. Shen, Compos. Sci. Technol., 88, 69 (2013).CrossRefGoogle Scholar
  5. (5).
    Y. Lin, S. Liu, J. Peng and L. Liu, Compos. Part A-Appl. Sci. Manuf., 86, 19 (2016).CrossRefGoogle Scholar
  6. (6).
    K. Kim, J.-Y. Lee, B.-J. Choi, B. Seo, G.-H. Kwag G.-H. H.-J. Paik, and W. Kim, Compos. Interfaces, 21, 685 (2014).CrossRefGoogle Scholar
  7. (7).
    M. A. Ansarifar, T. Nanapoolsin, and A. Jain, J. Rubb. Res., 5, 11 (2002).Google Scholar
  8. (8).
    S. Wolff, U. Gorl, M. J. Wang and W. Wolff, Eur. Rubb. J., 16, 16 (1994).Google Scholar
  9. (9).
    A. Ansarifar, L. Wang, R. J. Ellis, and S. P. Kirtley, Rubber Chem. Technol, 79, 39 (2006).CrossRefGoogle Scholar
  10. (10).
    A. Ansarifar, L. Wang R. J. Ellis, S. P. Kirtley, and N. Riyazuddin, J. Appl. Polym. Sci, 105, 322 (2007).CrossRefGoogle Scholar
  11. (11).
    K. J. Kim and J. VanderKooi, J. Indust Eng. Chem., 8, 334 (2002).Google Scholar
  12. (12).
    K. J. Kim and J. L. White, J. Indust Eng. Chem., 6, 372 (2000).Google Scholar
  13. (13).
    N. G. Eskandar, S. Simovic, and C. A. Prestidge, J. Colloid. Interf. Sci., 358, 217 (2011).CrossRefGoogle Scholar
  14. (14).
    S. Simovic and C. A. Prestidge, Langmuir, 19, 3785 (2003).CrossRefGoogle Scholar
  15. (15).
    F. Vilmin, I. Bottero, A. Travert, N. Malicki, F. Gaboriaud, A. Trivella, and F. Thibault-Starzyk, J. Phys. Chem. C, 118, 4056 (2014).CrossRefGoogle Scholar
  16. (16).
    L. Qu, G. Yu, X. Xie, L. Wang, J. Li, and Q. Zhao, Polym. Compos, 34, 1575 (2013).CrossRefGoogle Scholar
  17. (17).
    F. Yatsuyanagi, N. Suzuki, M. Ito, and H. Kaidou, Polym. J., 34, 332 (2002).CrossRefGoogle Scholar
  18. (18).
    C. J. Brinker, J. Non-Cryst Solids, 100, 31 (1988).CrossRefGoogle Scholar
  19. (19).
    B. K. Coltrainand L. W. Kelts, Adv. Chem. Ser, 234, 403 (1994)CrossRefGoogle Scholar
  20. (20).
    E. C. d. O. Nassor, L. R. Ávila, P.F.d.S. Pereira, K. J. Ciuffi, P. S. Calefi, and E. J. Nassar, Mater. Res., 14, 1 (2011).CrossRefGoogle Scholar
  21. (21).
    C. M. Flanigan, L. Beyer, D. Klekamp, D. Rohweder, B. Stuck, and E. R. Terrill, Rubber World, 245, 18 (2012).Google Scholar
  22. (22).
    O. S. Kwon, D. Lee, S. P. Lee, Y. G. Kang N. C. Kim, and S. H. Song RSC Adv., 6, 59970 (2016).CrossRefGoogle Scholar
  23. (23).
    S. H. Song J. M. Kim, K. H. Park, D. J. Lee, O. S. Kwon, J. Kim, H. Yoon, and X. Chen, RSC Adv., 5, 81707 (2015).CrossRefGoogle Scholar
  24. (24).
    K. Guo and Q. Liu, Vehicle System Dynamics, 27, 83 (2007).Google Scholar
  25. (25).
    E. Ciulli, P. I. Mech. Eng. D-J. Aut., 2016, 4 (1992).Google Scholar
  26. (26).
    Y. Ikeda, A. Katoh, J. Shimanuki, and S. Kohjiya, Macromol. Rapid Commun, 25, 1186 (2004).CrossRefGoogle Scholar
  27. (27).
    N. Jouault, P. Vallat, F. Dalmas, S. Said, J. Jestin, and F. Boue, Macromolecules, 42, 2031 (2009).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  1. 1.Department of Advanced Materials EngineeringChungbuk National UniversityChungbukKorea
  2. 2.Division of Advanced Materials EngineeringKongju National UniversityChungnamKorea

Personalised recommendations