Advertisement

Macromolecular Research

, Volume 27, Issue 7, pp 679–685 | Cite as

Graphene Oxide Nanosheet-Composited Poly(N-isopropylacrylamide) Hydrogel for Cell Sheet Recovery

  • Yongqing XiaEmail author
  • Han Wu
  • Dachao Tang
  • Shuai Gao
  • Binghe Chen
  • Zhujun Zeng
  • Shengjie Wang
  • Meiwen Cao
  • Dongxiang Li
Article
  • 98 Downloads

Abstract

Cell sheet engineering technique has been applied to treat various tissues without the use of a traditional scaffold. To date, methods for the cell sheet harvesting depend mostly on grafted poly(N-isopropylacrylamide) (pNIPAAm) thin layers, while the native pNIPAAm hydrogel, which possibly presents the easiest way to prepare thermo-responsive materials, is not suitable for the cell sheet harvesting due to its low cell attachment. In this study, the graphene oxide (GO) nanosheet was utilized as an additive to enhance the bio-compatibility of the pNIPAAm hydrogel. Different concentrations of GO nanosheets were added to prepare GO/pNIPAAm composite hydrogels through the in-situ free radical polymerization with polyethylene glycol dimethacrylate (PEGDA) as a cross-linker. The results indicated that the physical properties of the composite hydrogels had little difference with that of the native pNIPAAm hydrogel. However, the cell attachment, proliferation and detachment behaviors on the composite hydrogel surface were greatly enhanced. Monkey fibroblast COS7 cells attached and proliferated better on the GO/pNIPAAm composite hydrogel, while intact COS7 cell sheets could be harvested from the composite hydrogels by simply lowering the temperature. In contrast, the cells appeared as clusters on the native pNIPAAm hydrogel. Furthermore, when HeLa and COS7 cells were seeded successively onto the micropatterned GO/pNIPAAm hydrogel, there could be the formation of a patterned HeLa/COS7 cell layer. The geometrically patterned GO/pNIPAAm hydrogel may provide an easy-to-prepare material for releasing patterned cell sheets compared to the specific cell-adhesive proteins reported to make patterned cell layers.

Keywords

poly(N-isopropylacrylamide) hydrogel graphene oxide nanosheet micropatterned surface cell sheet 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13233_2019_7099_MOESM1_ESM.pdf (4.3 mb)
Graphene Oxide Nanosheet-Composited Poly(N-isopropylacrylamide) Hydrogel for Cell Sheet Recovery

References

  1. (1).
    R. Langer and J. Vacanti, Science, 260, 920 (1993).CrossRefGoogle Scholar
  2. (2).
    K. Sakaguchi, T. Shimizu, and T. Okano, J. Control. Release, 205, 83 (2015).CrossRefGoogle Scholar
  3. (3).
    H. Takahashi, T. Shimizu, M. Nakayama, M. Yamato, and T. Okano, Biomaterials, 34, 7372 (2013).CrossRefGoogle Scholar
  4. (4).
    N. Yaji, M. Yamato, J. Yang, T. Okano, and S. Hori, Biomaterials, 30, 797 (2009).CrossRefGoogle Scholar
  5. (5).
    Y. Sudo, H. Sakai, Y. Nabae, T. Hayakawa, and M. Kakimoto, Polymer, 70, 307 (2015).CrossRefGoogle Scholar
  6. (6).
    K. Fukumori, Y. Akiyama, Y. Kumashiro, J. Kobayashi, M. Yamato, K. Sakai, and T. Okano, Macromol. Biosci., 10, 1117 (2010).CrossRefGoogle Scholar
  7. (7).
    M. K. Chumakov, L. Shahamat, A. Weaver, J. LeBlanc, M. Chaychian, J. Silverman, K. B. Richter, D. Weiss, and M. Al-Sheikhly, Radiat Phys. Chem., 80, 182 (2011).CrossRefGoogle Scholar
  8. (8).
    Y. W. Huang, M. Zeng J. Ren, J. Wang, L. R. Fan, and Q. Y. Xu, Colloid Surf. A, 401, 97 (2012).CrossRefGoogle Scholar
  9. (9).
    S. Rayatpisheh, P. Li, and M. B. Chan-Park, Macromol. Biosci., 12, 937 (2012).CrossRefGoogle Scholar
  10. (10).
    B. M. Bluestein, J. A. Reed, and H. E. Canavan, Appl. Surf. Sci., 392, 950 (2017).CrossRefGoogle Scholar
  11. (11).
    N. G. Patel, J. P. Cavicchia, G. Zhang, and B. M. Z. Newby, Acta Biomater, 8, 2559 (2012).CrossRefGoogle Scholar
  12. (12).
    M. E. Nash, D. Healy, W. M. Carroll, C. Elvira, and Y. A. Rochev, J. Mater. Chem., 22, 19376 (2012).CrossRefGoogle Scholar
  13. (13).
    H. Takahashi, N. Matsuzaka, M. Nakayama, A. Kikuchi, M. Yamato, and T. Okano, Biomacromolecules, 13, 253 (2012).CrossRefGoogle Scholar
  14. (14).
    Y. Sudo, R. Kawai, H. Sakai, R. Kikuchi, Y. Nabae, T. Hayakawa, and M. A. Kakimoto, Langmuir, 34, 653 (2018).CrossRefGoogle Scholar
  15. (15).
    M. A. Cooperstein, B. M. Bluestein, and H. E. Canavan, Biointerphases, 10, 019001 (2015).CrossRefGoogle Scholar
  16. (16).
    S. Schmidt, M. Zeiser, T. Hellweg, C. Duschl, A. Fery, and H. Möhwald, Adv. Funct Mater., 20, 3235 (2010).CrossRefGoogle Scholar
  17. (17).
    Y. Xia, Y. Tang, X. He, F. Pan, Z. Li, H. Xu, and J. R. Lu, Biomacromolecules, 17, 572 (2016).CrossRefGoogle Scholar
  18. (18).
    Y. Xia, X. He, M. Cao, C. Chen, H. Xu, F. Pan, and J. R. Lu, Biomacromolecules, 14, 3615 (2013).CrossRefGoogle Scholar
  19. (19).
    Y. S. Chen, P. C. Tsou, J. M. Lo, H. C. Tsai, Y. Z. Wang, and G. H. Hsiue, Biomaterials, 34, 7328 (2013).CrossRefGoogle Scholar
  20. (20).
    K. Haraguchi, T. Takehisa, and M. Ebato, Biomacromolecules, 7, 3267 (2006).CrossRefGoogle Scholar
  21. (21).
    J. Y. Wang, L. Chen, Y. P. Zhao, G. Guo, and R. Zhang, J. Mater. Sci.-Mater. Med., 20, 583 (2009).CrossRefGoogle Scholar
  22. (22).
    J. Lim, I. Jun, Y. Bin Lee, E. M. Kim, D. Shin, H. Jeon, H. Park, and H. Shin, Macromol. Res., 24, 562 (2016).CrossRefGoogle Scholar
  23. (23).
    S. Gurunathan and J.-H. Kim, Int. J. Nanomed., 11, 1927 (2016).CrossRefGoogle Scholar
  24. (24).
    M. Xu, J. Zhu, F. Wang, Y. Xiong, Y. Wu, Q. Wang, J. Weng, Z. Zhang, W. Chen, and S. Liu, ACS Nano, 10, 3267 (2016).CrossRefGoogle Scholar
  25. (25).
    X. F. Liu, A. L. Miller, S. Park, B. E. Waletzki, A. Terzic, M. J. Yaszemski, and L. C. Lu, J. Mater. Chem. B, 4, 6930 (2016).CrossRefGoogle Scholar
  26. (26).
    J. R. Chen, X. T. Shi, L. Ren, and Y. J. Wang, Carbon, 111, 18 (2017).CrossRefGoogle Scholar
  27. (27).
    S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon, 45, 1558 (2007).CrossRefGoogle Scholar
  28. (28).
    J. R. Tse and A. J. Engler, Plos One, 6, e15978 (2011).CrossRefGoogle Scholar
  29. (29).
    T. Yeung, P. C. Georges, L. A. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W. Y. Ming, V. Weaver, and P. A. Janmey, Cell Motil. Cytoskel., 60, 24 (2005).CrossRefGoogle Scholar
  30. (30).
    J. Fukuda, A. Khademhosseini, J. Yeh, G. Eng, J. J. Cheng, O. C. Farokhzad, and R. Langer, Biomaterials, 27, 1479 (2006).CrossRefGoogle Scholar
  31. (31).
    I. Elloumi Hannachi, K. Itoga, Y. Kumashiro, J. Kobayashi, M. Yamato, and T. Okano, Biomaterials, 30, 5427 (2009).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  • Yongqing Xia
    • 1
    Email author
  • Han Wu
    • 1
  • Dachao Tang
    • 1
  • Shuai Gao
    • 1
  • Binghe Chen
    • 1
  • Zhujun Zeng
    • 1
  • Shengjie Wang
    • 1
  • Meiwen Cao
    • 1
  • Dongxiang Li
    • 2
  1. 1.Center for Bioengineering and BiotechnologyChina University of Petroleum (East China)QingdaoP. R. China
  2. 2.Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdaoP. R. China

Personalised recommendations