Skip to main content
Log in

Dual-Responsive Shape Memory and Thermally Reconfigurable Reduced Graphene Oxide-Vitrimer Composites

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

In this paper, we have prepared shape memory reduced graphene oxide-vitrimer composites via in situ reduction of graphene oxide (GO) during the curing reaction. Because of good compatibility between GO and epoxy resin, reduced graphene oxide (rGO) has a good dispersion in the epoxy matrix. Conventional thermoset shape memory polymers can only maintain one permanent shape, while these obtained composites can be randomly reconfigured into other shapes via dynamic covalent transesterification reaction at 200 °C above transesterification temperature (TV). They can recover quickly from fixed shapes to their initial shapes with shape fixity ratio higher than 95% and shape recovery ratio higher than 97%. Besides, the rGO-vitrimers show good mechanical properties and thermal stabilities. In addition, sequent near-infrared (NIR) irradiation can control the shape recovery, because rGO can serve as an energy convertor to convert NIR irradiation into thermal energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Habault, H. Zhang, and Y. Zhao, Chem. Soc. Rev., 42, 7244 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. S. Ishii, K. Uto, E. Niiyama, M. Ebara, and T. Nagao, ACS Appl. Mater. Interfaces, 8, 5634 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. W. M. Huang, B. Yang, Y. Zhao, and Z. Ding, J. Mater Chem., 20, 3367 (2010).

    Article  CAS  Google Scholar 

  4. W. M. Huang, B. Yang, L. An, C. Li, and Y. S. Chan, Appl. Phys. Lett., 86 (2005).

  5. D. Schmaljohann, Adv. Drug Deliv. Rev., 58, 1655 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. A. Lendlein and S. Kelch, Angew. Chem. Int. Ed., 41, 2034 (2002).

    Article  CAS  Google Scholar 

  7. P. T. Mather, X. Luo, and I. A. Rousseau, Annu. Rev. Mater Res., 39, (2009).

  8. V. Gopishetty, Y. Roiter, I. Tokarev, and S. Minko, Adv. Mater., 20, 4588 (2008).

    Article  CAS  Google Scholar 

  9. Y. Zhang, L. Tao, S. Li, and Y. Wei, Biomacromolecules, 12, 2894 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Z. He, N. Satarkar, T. Xie, Y.-T. Cheng, and J. Z. Hilt, Adv. Mater., 23, 3192 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. U. N. Kumar, K. Kratz, W. Wagermaier, M. Behl, and A. Lendlein, J. Mater. Chem., 20, 3404 (2010).

    Article  CAS  Google Scholar 

  12. X. Xie, L. Qu, C. Zhou, Y. Li, J. Zhu, H. Bai, G. Shi, and L. Dai, ACS Nano, 4, 6050 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Y. Osada, H. Okuzaki, and H. Hori, Nature, 355, 242 (1992).

    Article  CAS  Google Scholar 

  14. N. Fritzsche and T. Pretsch, Macromolecules, 47, 5952 (2014).

    Article  CAS  Google Scholar 

  15. M. Ecker and T. Pretsch, RSC Adv., 4, 46680 (2014).

    Article  CAS  Google Scholar 

  16. I. Navarro-Baena, J. M. Kenny, and L. Peponi, Cellulose, 21, 4231 (2014).

    Article  CAS  Google Scholar 

  17. A. Saralegi, M. Luz Gonzalez, A. Valea, A. Eceiza, and M. A. Corcuera, Compos. Sci. Technol., 92, 27 (2014).

    Article  CAS  Google Scholar 

  18. Y. Qiu and K. Park, Adv. Drug Deliv. Rev., 64, 49 (2012).

    Article  Google Scholar 

  19. A. Roesler, G. W. M. Vandermeulen, and H.-A. Klok, Adv. Drug Deliv. Rev., 64, 270 (2012).

    Article  Google Scholar 

  20. L. Sun, W. M. Huang, C. C. Wang, Z. Ding, Y. Zhao, C. Tang, and X. Y. Gao, Liq. Cryst, 41, 277 (2014).

    Article  CAS  Google Scholar 

  21. M. Bothe and T. Pretsch, J. Mater Chem. A, 1, 14491 (2013).

    Article  CAS  Google Scholar 

  22. A. Khaldi, J. A. Elliott, and S. K. Smoukov, J. Mater. Chem. C, 2, 8029 (2014).

    Article  CAS  Google Scholar 

  23. L. Sun, W. M. Huang H. B. Lu, C. C. Wang and J. L. Zhang Assembly Autom., 34, 78 (2014).

    Article  Google Scholar 

  24. Y. Liu, H. Du, L. Liu, and J. Leng, Smart Mater Struct., 23 (2014).

  25. M. Behl and A. Lendlein, Mater. Today, 10, 20 (2007).

    Article  CAS  Google Scholar 

  26. B. T. Michal, C. A. Jaye, E. J. Spencer, and S. J. Rowan, ACS Macro Lett, 2, 694 (2013).

    Article  CAS  Google Scholar 

  27. H. Guo, Y. Li, J. Zheng, J. Gan, L. Liang, K. Wu, and M. Lu, RSC Adv., 5, 67247 (2015).

    Article  CAS  Google Scholar 

  28. M. Yoonessi, Y. Shi, D. A. Scheiman, M. Lebron-Colon, D. M. Tigelaar, R. A. Weiss, and M. A. Meador, ACS Nano, 6, 7644 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Q. Wang, Y. Bai, Y. Chen, J. Ju, F. Zheng, and T. Wang, J. Mater. Chem. A, 3, 352 (2015).

    Article  CAS  Google Scholar 

  30. X. L. Xiao, D. Y. Kong, X. Y. Qiu, W. B. Zhang, F. H. Zhang, L. W. Liu, Y. J. Liu, S. Zhang, Y. Hu, and J. S. Leng, Macromolecules, 48, 3582 (2015).

    Article  CAS  Google Scholar 

  31. M. I. Lawton, K. R. Tillman, H. S. Mohammed, W. Kuang, D. A. Shipp, and P. T. Mather, ACS Macro Lett., 5, 203 (2016).

    Article  CAS  Google Scholar 

  32. Z. Yang, Q. Wang, and T. Wang, ACS Appl. Mater. Interfaces, 8, 21691 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Q. Zhao, W. Zou, Y. Luo, and T. Xie, Sci. Adv., 2 (2016).

  34. Y. Yang, Z. Pei, Z. Li, Y. Wei, and Y. Ji, J.Am. Chem. Soc., 138, 2118 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Z. Pei, Y. Yang, Q. Chen, Y. Wei, and Y. Ji, Adv. Mater., 28, 156 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. D. A. Kissounko, P. Taynton, and C. Kaffer, Reinforced Plast., 62, 162 (2018).

    Article  Google Scholar 

  37. Z. Q. Pei, Y. Yang, Q. M. Chen, E. M. Terentjev, Y. Wei, and Y. Ji, Nat. Mater., 13, 36 (2014).

    Article  CAS  Google Scholar 

  38. D. Montarnal, M. Capelot, F. Tournilhac, and L. Leibler, Science, 334, 965 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. D. R. Bortz, E. G. Heras, and I. Martin-Gullon, Macromolecules, 45, 238 (2012).

    Article  CAS  Google Scholar 

  40. L. Amirova, A. Surnova, D. Balkaev, D. Musin, R. Amirov, and A. M. Dimiev, ACS Appl. Mater. Interfaces, 9, 11909 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. R. Moosaei, M. Sharif, and A. Ramezannezhad, Polym. Test., 60, 173 (2017).

    Article  CAS  Google Scholar 

  42. D. D. Kulkarni, I. Choi, S. Singamaneni, and V. V. Tsukruk, ACS Nano, 4, 4667 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. L. Yu, Z. Cheng, Z. Dong, Y. Zhang, and H. Yu, J. Mater. Chem. C, 2, 8501 (2014).

    Article  CAS  Google Scholar 

  44. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, Adv. Mater, 22, 3906 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Z. Cheng, T. Wang, X. Li, Y. Zhang, and H. Yu, ACS Appl. Mater. Interfaces, 7, 27494 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. J. H. Huang, L. Zhao, T. Wang, W. X. Sun, and Z. Tong, ACS Appl. Mater Interfaces, 8, 12384 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. S. Ren, L. Liang, Y. Lan, and M. Lu, J. Appl. Polym. Sci., 106, 2917 (2007).

    Article  CAS  Google Scholar 

  48. H. Tang, G. J. Ehlert, Y. Lin, and H. A. Sodano, Nano Lett., 12, 84 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. H.-K. Jeong, Y. P. Lee, M. H. Jin, E. S. Kim, J. J. Bae, and Y. H. Lee, Chem. Phys. Lett., 470, 255 (2009).

    Article  CAS  Google Scholar 

  50. Y. Yang, Z. Pei, X. Zhang, L. Tao, Y. Wei, and Y. Ji, Chem. Sci., 5, 3486 (2014).

    Article  CAS  Google Scholar 

  51. M. Capelot, M. M. Unterlass, F. Tournilhac, and L. Leibler, ACS Macro Lett., 1, 789 (2012).

    Article  CAS  Google Scholar 

  52. M. Capelot, D. Montarnal, F. Tournilhac, and L. Leibler, J. Am. Chem. Soc., 134, 7664 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Z. Li, Y. Yang, Z. Wang, X. Zhang, Q. Chen, X. Qian, N. Liu, Y. Wei, and Y. Ji, J. Mater. Chem. A, 5, 6740 (2017).

    Article  CAS  Google Scholar 

  54. Q. Chen, X. Yu, Z. Pei, Y. Yang, Y. Wei, and Y. Ji, Chem. Sci., 8, 724 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. G. B. Olowojoba, S. Kopsidas, S. Eslava, E. S. Gutierrez, A. J. Kinloch, C. Mattevi, V. G. Rocha, and A. C. Taylor, J. Mater. Sci., 52, 7323 (2017).

    Article  CAS  Google Scholar 

  56. H. Guo, M. Lu, L. Liang, J. Zheng, Y. Zhang, Y. Li, Z. Li, and C. Yang, J. Appl. Polym. Sci., 131, 40363 (2014).

    Google Scholar 

  57. T. Khezri, M. Sharif, and B. Pourabas, RSC Adv., 6, 93680 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man-geng Lu.

Additional information

Acknowledgments: The financial supports from Guangdong Natural Science Foundation, China (No. 2015A030313798, 2016A030313161) and Guangdong Special Support Program-Youth Top-notch Talent (No. 2014TQ01C400) are acknowledged.

The image from this article is used as the cover image of the Volume 27, Issue 6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Gk., Wu, K., Zhang, Q. et al. Dual-Responsive Shape Memory and Thermally Reconfigurable Reduced Graphene Oxide-Vitrimer Composites. Macromol. Res. 27, 526–533 (2019). https://doi.org/10.1007/s13233-019-7080-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-019-7080-x

Keywords

Navigation