Skip to main content
Log in

Multiple Energy Harvesting Based on Reversed Temperature Difference Between Graphene Aerogel Filled Phase Change Materials

Macromolecular Research Aims and scope Submit manuscript

Abstract

We demonstrated a thermo-electric energy harvesting system that utilized the temperature difference between two graphene aerogel filled composites. Two phase change materials (PCMs), polyethylene glycol (PEG) and 1-tetradecanol (1-TD), were used to absorb or release a large amount of heat of fusion during the phase transitions. Since the temperature of cold side can be higher than that of hot side in the heating and cooling processes, unwanted energy loss may occur in the PCM system. Therefore, the amount of energy harvesting is quite limited. In this sense, we designed a new energy harvesting system by integrating two kinds of PCMs to enhance the amount of released heat energy and its time duration. The energy harvesting based on thermo-electric conversion was performed by combining multi-PCMs with N and P type semiconductors (PN TEGs). Based on the different temperature gradients generated in melting and crystallization processes, the electric energy was harvested for 2,200 s and 850 s at the first thermo-electric conversion and for 2,700 s and 1,500 s at the second thermo-electric conversion. In addition, the numerical simulation of the system was carried out using the finite element method (FEM), and the predicted results were close to the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Im, T. Kim, H. Song, J. Choi, J. S. Park, R. Ovalle-Robles, H. D. Yang, K. D. Kihm, R H. Baughman, and H. H. Lee, Nat. Commun., 7, 10600 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. C. B. Vining, Nat. Mater., 8, 83 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. B. Russ, A. Glaudell, J. J. Urban, M. L. Chabinyc, and R. A. Segalman, Nat. Rev. Mater., 1, 16050 (2016).

    Article  CAS  Google Scholar 

  4. G. Qi, J. Yang, R. Bao, D. Xia, M. Cao, W. Yang, M. Yang, and D. Wei, Nano Res., 10, 802 (2017).

    Article  CAS  Google Scholar 

  5. X Chen, H. Gao, M. Yang, W. Dong, X. Huang, A. Li, C. Dong, and G. Wang, Nano Energy, 49, 86 (2018).

    Article  CAS  Google Scholar 

  6. J. P. da Cunha and P. Eames, Appl. Energy, 177, 227 (2016).

    Article  CAS  Google Scholar 

  7. B. Xu and Z. Li, Appl. Energy, 105, 229 (2013).

    Article  CAS  Google Scholar 

  8. M. Jaworski, M. Bednarczyk, and M. Czachor, Appl. Therm. Eng., 96, 527 (2016).

    Article  Google Scholar 

  9. M. M. A. Khan, N. I. Ibrahim, I. Mahbubul, H. M. Ali, R. Saidur, and F. A. Al-Sulaiman, Sol. Energy, 166, 334 (2018).

    Article  CAS  Google Scholar 

  10. S. Ye, Q. Zhang, D. Hu, and J. Feng, J. Mater. Chem. A, 3, 4018 (2015).

    Article  CAS  Google Scholar 

  11. S. Karaman, A. Karaipekli, A. Sarı, and A. Bicer, Sol. Energy Mater. Sol. Cells, 95, 1647 (2011).

    Article  CAS  Google Scholar 

  12. Y. Wang, T. D. Xia, H. X. Feng, and H. Zhang, Renew. Energy, 36, 1814 (2011).

    Article  CAS  Google Scholar 

  13. A. Sarı, A. Bicer, F. Al-Sulaiman, A. Karaipekli, and V. Tyagi, Energy Buildings, 164, 166 (2018).

    Article  Google Scholar 

  14. J.-L. Zeng, F.-R. Zhu, S.-B. Yu, Z.-L. Xiao, W.-P. Yan, S.-H. Zheng, L. Zhang, L.-X. Sun, and Z. Cao, Sol. Energy Mater. Sol. Cells, 114, 136 (2013).

    Article  CAS  Google Scholar 

  15. M. G. Li, Y. Zhang, Y. H. Xu, and D. Zhang, Polym. Bull., 67, 541 (2011).

    Article  CAS  Google Scholar 

  16. T. Wang, S. Wang, R. Luo, C. Zhu, T. Akiyama, and Z. Zhang, Appl. Energy, 171, 113 (2016).

    Article  CAS  Google Scholar 

  17. Z. Zhang and X. Fang, Energy Convers. Manage., 47, 303 (2006).

    Article  CAS  Google Scholar 

  18. G. Leng, G. Qiao, Z. Jiang, G. Xu, Y. Qin, C. Chang, and Y. Ding, Appl. Energy, 217, 212 (2018).

    Article  CAS  Google Scholar 

  19. G. V. Belessiotis, K. G. Papadokostaki, E. P. Favvas, E. K. Efthimiadou, and S. Karellas, Energy Convers. Manage., 168, 382 (2018).

    Article  CAS  Google Scholar 

  20. B. Mu and M. Li, Sci. Rep., 8, 8878 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. L. Liu, K. Zheng, Y. Yan, Z. Cai, S. Lin, and X. Hu, Sol. Energy Mater. Sol. Cells, 185, 487 (2018).

    Article  CAS  Google Scholar 

  22. Y. S. Yun, S. Y. Cho, and H.-J. Jin, Maeromol. Res., 22, 509 (2014).

    Article  CAS  Google Scholar 

  23. G.-Q. Qi, C.-L. Liang, R.-Y. Bao, Z.-Y. Liu, W. Yang, B.-H. Xie, and M.-B. Yang, Sol. Energy Mater Sol. Cells, 123, 171 (2014).

    Article  CAS  Google Scholar 

  24. A. Krittayavathananon and M. Sawangphruk, Eleetroehim. Aeta, 212, 237 (2016).

    CAS  Google Scholar 

  25. D. Li and G. Sur, Maeromol. Res., 22, 113 (2014).

    Article  CAS  Google Scholar 

  26. D. Zou, X. Ma, X. Liu, P. Zheng, and Y. Hu, Int. J. Heat Mass Transfer, 120, 33 (2018).

    Article  CAS  Google Scholar 

  27. J. Yang, L.-S. Tang, R.-Y. Bao, L. Bai, Z.-Y. Liu, B.-H. Xie, M.-B. Yang, and W. Yang, Sol. Energy Mater. Sol. Cells, 174, 56 (2018).

    Article  CAS  Google Scholar 

  28. W. Feng, M. Qin, and Y. Feng, Carbon, 109, 575 (2016).

    Article  CAS  Google Scholar 

  29. C. Yu, S. H. Yang, S. Y. Pak, J. R. Youn, and Y. S. Song, Energy Convers. Manage, 169, 88 (2018).

    Article  CAS  Google Scholar 

  30. J. Yang, L.-S. Tang, R.-Y. Bao, L. Bai, Z.-Y. Liu, W. Yang, B.-H. Xie, and M.-B. Yang, Chem. Eng. J., 315, 481 (2017).

    Article  CAS  Google Scholar 

  31. S. A. Atouei, A. A. Ranjbar, and A. Rezania, Appl. Energy, 208, 332 (2017).

    Article  Google Scholar 

  32. S. A. Atouei, A. Rezania, A. Ranjbar, and L. A. Rosendahl, Energy, 156, 311 (2018).

    Article  Google Scholar 

  33. W. He, G. Zhang, X. Zhang, J. Ji, G. Li, and X. Zhao, Appl. Energy, 143, 1 (2015).

    Article  Google Scholar 

  34. S. Kim, Appl. Energy, 102, 1458 (2013).

    Article  Google Scholar 

  35. J. Choi, N. D. Tu, S.-S. Lee, H. Lee, J. S. Kim, and H. Kim, Maeromol. Res., 22, 1104 (2014).

    Article  CAS  Google Scholar 

  36. Y. Zhang, G. G. Gurzadyan, M. M. Umair, W. Wang, R. Lu, S. Zhang, and B. Tang, Chem. Eng. J., 344, 402 (2018).

    Article  CAS  Google Scholar 

  37. T. H. Kwan, X. Wu, and Q. Yao, Energy, 159, 448 (2018).

    Article  Google Scholar 

  38. R. Chavez, S. Angst, J. Hall, F. Maculewicz, J. Stoetzel, H. Wiggers, L. T. Hung, N. Van Nong, N. Pryds, and G. Span, J. Phys. D: Appl. Phys., 51, 014005 (2017).

    Article  CAS  Google Scholar 

  39. R. Chavez, S. Angst, J. Hall, J. Stoetzel, V. Kessler, L. Bitzer, F. Maculewicz, N. Benson, H. Wiggers, D. Wolf, G. Schierning, and R. Schmechel, J. Electron. Mater., 43, 2376 (2014).

    Article  CAS  Google Scholar 

  40. J. Yang, G.-Q. Qi, Y. Liu, R.-Y. Bao, Z.-Y. Liu, W. Yang, B.-H. Xie, and M.-B. Yang, Carbon, 100, 693 (2016).

    Article  CAS  Google Scholar 

  41. H. He, J. Klinowski, M. Forster, and A. Lerf, Chem. Phys. Lett., 287, 53 (1998).

    Article  CAS  Google Scholar 

  42. J. Guerrero-Contreras and F. Caballero-Briones, Mater. Chem. Phys., 153, 209 (2015).

    Article  CAS  Google Scholar 

  43. J. Song, X. Wang, and C.-T. Chang, J. Nanomater., 2014, 2014.

  44. J. Kim, W.-H. Khoh, B.-H. Wee, and J.-D. Hong, Rse. Adv., 5, 9904 (2015).

    Article  CAS  Google Scholar 

  45. L.-S. Tang, J. Yang, R.-Y. Bao, Z.-Y. Liu, B.-H. Xie, M.-B. Yang, and W. Yang, Energy. Convers. Manage., 146, 253 (2017).

    Article  CAS  Google Scholar 

  46. Q. Wei, M. Mukaida, K. Kirihara, Y. Naitoh, and T. Ishida, Materials, 8, 732 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Q. Wei, M. Mukaida, K. Kirihara, Y. Naitoh, and T. Ishida, RSC Adv., 4, 28802 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jae Ryoun Youn or Young Seok Song.

Additional information

Acknowledgments: The authors acknowledge the support from the soft chemical materials research center for organic-inorganic multi-dimensional structures, which is funded by Gyeonggi Regional Research Center Program (GRRC dankook 2016-B03).

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, C., Youn, J.R. & Song, Y.S. Multiple Energy Harvesting Based on Reversed Temperature Difference Between Graphene Aerogel Filled Phase Change Materials. Macromol. Res. 27, 606–613 (2019). https://doi.org/10.1007/s13233-019-7079-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-019-7079-3

Key words

Navigation