Skip to main content

Poly(3-hexylthiophene) Nanoparticles Prepared via a Film Shattering Process and Hybridization with TiO2 for Visible-Light Active Photocatalysis

Abstract

We present a methodology to prepare a hybrid photocatalyst based on conjugated polymer nanoparticles (CPNs) by electrostatically adsorbing TiO2 nanoparticles on the surfaces of the CPNs to achieve synergetic effects of efficient light-harvesting by CPNs and photocatalysis by TiO2 nanoparticles by taking advantages of the energy transfer from the CPNs to TiO2. Positive surface charges on CPNs were introduced by adding a portion of cationic amphiphile during the preparation of CPNs using poly(3-hexylthiophene) and a phospholipid via a phase-separated film shattering process. Then, anionic TiO2 nanoparticles were synthesized and adsorbed on the positively charged surfaces of CPNs by electrostatic attraction. The resulting hybrid nanoparticles showed efficient visible-light active photocatalysis which was confirmed by the degradation of methylene blue with visible-light irradiation.

This is a preview of subscription content, access via your institution.

References

  1. (1)

    J. Park, J. Ind. Eng. Chem., 51, 27 (2017).

    Article  CAS  Google Scholar 

  2. (2)

    R. Daghrir, P. Drogui, and D. Robert, Ind. Eng. Chem. Res., 52, 3581 (2013).

    Article  CAS  Google Scholar 

  3. (3)

    X. C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, Nat. Mater., 8, 76 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. (4)

    C. H. Dai, S. D. Xu, W. Liu, X. Z. Gong, M. Panahandeh-Fard, Z. T. Liu, D. Q. Zhang, C. Xue, K. P. Loh, and B. Liu, Small, 14, 1801839 (2018).

    Article  CAS  Google Scholar 

  5. (5)

    D. P. Ojha, H. P. Karki, and H. Kim, J. Ind. Eng. Chem., 61, 87 (2018).

    Article  CAS  Google Scholar 

  6. (6)

    G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science, 270, 1789 (1995).

    Article  CAS  Google Scholar 

  7. (7)

    Y.-W. Su, W.-H. Lin, Y.-J. Hsu, and K.-H. Wei, Small, 10, 4427 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. (8)

    L. J. A. Koster, V. D. Mihailetchi, and P. W. M. Blom, Appl. Phys. Lett., 88, 093511 (2006).

    Article  CAS  Google Scholar 

  9. (9)

    T. Xu and Q. Qiao, Energy Environ. Sci., 4, 2700 (2011).

    Article  CAS  Google Scholar 

  10. (10)

    D. Wang, J. Zhang, Q. Luo, X. Li, Y. Duan, and J. An, J. Hazard. Mater., 169, 546 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. (11)

    Y. Zhu and Y. Dan, Sol. Energy Mater. Sol. C, 94, 1658 (2010).

    Article  CAS  Google Scholar 

  12. (12)

    J. Zhang, H. Yang, S. Xu, L. Yang, Y. Song, L. Jiang, and Y. Dan, Appl. Catal. B: Environ., 174–175, 193 (2015).

    Google Scholar 

  13. (13)

    J. Yoon, J. Kwag, T. J. Shin, J. Park, Y. M. Lee, Y. Lee, J. Park, J. Heo, C. Joo, T. J. Park, P. J. Yoo, S. Kim, and J. Park, Adv. Mater., 26, 4559 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. (14)

    Y. K. Choi, D. Lee, S. Y. Lee, T. J. Shin, J. Park, and D. J. Ahn, Macromolecules, 50, 6935 (2017).

    Article  CAS  Google Scholar 

  15. (15)

    K. C. Krogman, N. S. Zacharia, D. M. Grillo, and P. T. Hammond, Chem. Mater., 20, 1924 (2008).

    Article  CAS  Google Scholar 

  16. (16)

    Y.-J. Kim, H.-T. Jung, C. W. Ahn, and H.-J. Jeon, Adv. Mater. Interfaces, 4, 1700342 (2017).

    Article  CAS  Google Scholar 

  17. (17)

    N. Bae, H. Park, P. J. Yoo, T. J. Shin, and J. Park, J. Ind. Eng. Chem., 51, 172 (2017).

    Article  CAS  Google Scholar 

  18. (18)

    D. Lee, T. J. Shin, P. J. Yoo, K. W. Oh, and J. Park, J. Ind. Eng. Chem., 63, 33 (2018).

    Article  CAS  Google Scholar 

  19. (19)

    J. Noh, S. Jung, D. G. Koo, G. Kim, K. S. Choi, J. Park, T. J. Shin, C. Yang, and J. Park, Sci. Rep., 8, 14448 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. (20)

    L. Zang, Y. Che, and J. S. Moore, Acc. Chem. Res., 41, 1596 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. (21)

    E. Verploegen, R. Mondal, C. J. Bettinger, S. Sok, M. F. Toney, and Z. Bao, Adv. Funct. Mater., 20, 3519 (2010).

    Article  CAS  Google Scholar 

  22. (22)

    S. D. D. V. Rughooputh, S. Hotta, A. J. Heeger, and F. Wudl, J. Polym. Sci. Polym. Phys., 25, 1071 (1987).

    Article  CAS  Google Scholar 

  23. (23)

    Y. Li, Y. Chen, X. Liu, Z. Wang, X. Yang, Y. Tu, and X. Zhu, Macromolecules, 44, 6370 (2011).

    Article  CAS  Google Scholar 

  24. (24)

    J. Peet, E. Brocker, Y. H. Xu, and G. C. Bazan, Adv. Mater., 20, 1882 (2008).

    Article  CAS  Google Scholar 

  25. (25)

    Y. Lee, I. Yang, J. E. Lee, S. Hwang, J. W. Lee, S.-S. Um, T. L. Nguyen, P. J. Yoo, H. Y. Woo, J. Park, and S. K. Kim, J. Phys. Chem. C, 117, 3298 (2013).

    Article  CAS  Google Scholar 

  26. (26)

    L. E. Garner, J. Park, S. M. Dyar, A. Chworos, J. J. Sumner, and G. C. Bazan, J. Am. Chem. Soc., 132, 10042 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Juhyun Park.

Additional information

Acknowledgments: This work was supported by the Chung-Ang University Graduate Research Scholarship in 2017 and the National Research Foundation of Korea (NRF-2016R1D1A1A02937538).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Che, J., Bae, N., Noh, J. et al. Poly(3-hexylthiophene) Nanoparticles Prepared via a Film Shattering Process and Hybridization with TiO2 for Visible-Light Active Photocatalysis. Macromol. Res. 27, 427–434 (2019). https://doi.org/10.1007/s13233-019-7071-y

Download citation

Keywords

  • conjugated polymers
  • nanoparticles
  • visible-light active
  • photocatalysis
  • dye degradation