Macromolecular Research

, Volume 27, Issue 4, pp 412–420 | Cite as

Hydrophobic Waterborne Epoxy Coating Modified by Low Concentrations of Fluorinated Reactive Modifier

  • Hongyi Shi
  • Weiqu LiuEmail author
  • Maiping Yang
  • Xinsheng Liu
  • Yankun Xie
  • Zhengfang Wang


Fluorinated (meth) acrylate oligomer modified epoxy resin (PHFBMA-DGEBA) and polyether-modified epoxy resin (MPEG-DGEBA) were successfully synthesized and used as reactive modifier and emulsifier for epoxy resins, respectively. GPC, FTIR and 1H NMR were employed to verify the synthesis. The influence of both the concentration and the molecular weight of PHFBMA-DGEBA on the properties of waterborne epoxy resin coatings was investigated. Surface energy and surface composition were probed by contact angle measurements and X-ray photoelectron spectroscopy (XPS), which strongly confirmed the enrichment of fluorinate atoms on the surface. The surface energy of waterborne epoxy coating was decreased from 44.46 mN/m to 23.20 mN/m by adding just 0.09 wt% PHFBMADGEBA-2, indicating its high effectiveness in improving the surface hydrophobicity. Moreover, the physical properties of waterborne epoxy coatings prepared with different concentration and molecular weight of fluorinated reactive modifier, such as water absorption, Shore D hardness, adhesion, thermal properties and optical transmittance, were also analyzed in detail. Taken together, the waterborne epoxy coatings prepared with low concentrations of reactive modifier are economical and have great potential in large scale industry applications.


reactive modifier emulsifier waterborne epoxy resin hydrophobicity low concentrations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    X. Luo, J. Zhong, Q. Zhou, S. Du, S. Yuan, and Y. Liu, ACS Appl. Mater. Interfaces, 10, 18400 (2018).CrossRefGoogle Scholar
  2. (2).
    S. Qiu, C. Chen, M. Cui, W. Li, H. Zhao, and L. Wang, Appl. Surf. Sci., 407, 213 (2017).CrossRefGoogle Scholar
  3. (3).
    B. Ramezanzadeh, S. Niroumandrad, A. Ahmadi, M. Mahdavian, and M. H. M. Moghadam, Corros. Sci., 103, 283 (2016).CrossRefGoogle Scholar
  4. (4).
    Z. Yang, L. Wang, W. Sun, S. Li, T. Zhu, W. Liu, and G. Liu, Appl. Surf. Sci., 401, 146 (2017).CrossRefGoogle Scholar
  5. (5).
    D. Yuan, V. S. Bonab, A. Patel, and I. Manas-Zloczower, Polymer, 147, 196 (2018).CrossRefGoogle Scholar
  6. (6).
    N. Chen, P. Zheng, Q. Zeng, Q. Lin, and J. Rao, Polymers, 9, (2017)Google Scholar
  7. (7).
    R. J. Li, J. Gutierrez, Y.-L. Chung, C. W. Frank, S. L. Billington, and E. S. Sattely, Green Chem., 20, 1459 (2018).CrossRefGoogle Scholar
  8. (8).
    J. Luo, X. Li, H. Zhang, Q. Gao, and J. Li, Int. J. Adhes. Adhes., 71, 99 (2016).CrossRefGoogle Scholar
  9. (9).
    R. Verker, A. Rivkin, G. Zilberman, and O. Shoseyov, Cellulose, 21, 4369 (2014).CrossRefGoogle Scholar
  10. (10).
    W. Liu, Z. Wang, L. Xiong, and L. Zhao, Polymer, 51, 4776 (2010).CrossRefGoogle Scholar
  11. (11).
    S. Rimdusit and H. Ishida, Polymer, 41, 7941 (2000).CrossRefGoogle Scholar
  12. (12).
    X. Zhang, A. Gu, G. Liang, D. Zhuo, and L. Yuan, J. Polym. Res., 18, 1441 (2011).CrossRefGoogle Scholar
  13. (13).
    F. Deng, L. Wang, Y. Zhou, X. Gong, X. Zhao, T. Hu, and C. Wu, RSC Adv., 7, 48876 (2017).CrossRefGoogle Scholar
  14. (14).
    H. Nazarpour-Fard, K. Rad-Moghadam, F. Shirini, M. H. Beheshty, and G. H. Asghari, Polimery, 63, 253 (2018).CrossRefGoogle Scholar
  15. (15).
    A. V. R. Prakash and A. Rajadurai, Appl. Surf. Sci., 384, 99 (2016).CrossRefGoogle Scholar
  16. (16).
    R. Sánchez-Hidalgo, V. Yuste-Sanchez, R. Verdejo, C. Blanco, M. A. Lopez-Manchado, and R. Menéndez, Eur. Polym. J., 101, 56 (2018).CrossRefGoogle Scholar
  17. (17).
    M. Liu, X. Mao, H. Zhu, A. Lin, and D. Wang, Corros. Sci., 75, 106 (2013).CrossRefGoogle Scholar
  18. (18).
    Y.-X. Dai, F.-N. Lv, B. Wang, and Y. Chen, Polymer, 145, 454 (2018).CrossRefGoogle Scholar
  19. (19).
    A. P. Singh, G. Gunasekaran, C. Suryanarayana, and R. B. Naik, Prog. Org. Coat., 87, 95 (2015).CrossRefGoogle Scholar
  20. (20).
    G.-M. Wu, Z.-W. Kong, J. Chen, S.-P. Huo, and G.-F. Liu, Prog. Org. Coat., 77, 315 (2014).CrossRefGoogle Scholar
  21. (21).
    J. Ding, O. U. Rahman, W. Peng, H. Dou, and H. Yu, Appl. Surface Sci., 427, 981 (2018).CrossRefGoogle Scholar
  22. (22).
    M. Liu, X. Mao, H. Zhu, A. Lin, and D. Wang, Corros. Sci., 75, 106 (2013).CrossRefGoogle Scholar
  23. (23).
    T. Ç. Çanak and İ. E. Serhatlı, Prog. Org. Coat., 76, 388 (2013).CrossRefGoogle Scholar
  24. (24).
    Z. Lin, W. Liu, and J. Tan, J. Appl. Polym. Sci., 135, 45894 (2018).CrossRefGoogle Scholar
  25. (25).
    T. Qian, J. Wang, T. Cheng, X. Zhan, Q. Zhang, and F. Chen, J. Polym. Sci. Part A: Polym. Chem., 54, 2040 (2016).CrossRefGoogle Scholar
  26. (26).
    N. Politakos, G. Kortaberria, I. Zalakain, I. Mondragon, and A. Avgeropoulos, Eur. Polym. J., 49, 1841 (2013).CrossRefGoogle Scholar
  27. (27).
    Y. Sun and W. Liu, J. Fluorine Chem., 132, 9 (2011).CrossRefGoogle Scholar
  28. (28).
    J. Tan, W. Liu, and Z. Wang, Prog. Org. Coat., 105, 353 (2017).CrossRefGoogle Scholar
  29. (29).
    J. Tan, W. Liu, H. Wang, Y. Sun, and S. Wang, J. Polym. Res., 22, (2015).Google Scholar
  30. (30).
    I. J. Park, S. B. Lee, and C. K. Choi, Polymer, 38, 2523 (1997).CrossRefGoogle Scholar
  31. (31).
    J. Tan, W. Liu, and Z. Wang, RSC Adv., 6, 34364 (2016).CrossRefGoogle Scholar
  32. (32).
    X. Huang, X. Wen, J. Cheng, and Z. Yang, Appl. Surf. Sci., 258, 8739 (2012).CrossRefGoogle Scholar
  33. (33).
    D. K. Owens and R. C. Wendt, J. Appl. Polym. Sci., 13, 1741 (1969).CrossRefGoogle Scholar
  34. (34).
    G. F. Chen and F. N. Jones, Macromolecules, 24, 2151 (1991).CrossRefGoogle Scholar
  35. (35).
    M. Sangermano, R. Bongiovanni, G. Malucelli, A. Priola, R. R. Thomas, C. M. Kausch, and Y. Kim, J. Polym. Sci. Part A: Polym. Chem., 44, 6943 (2006).CrossRefGoogle Scholar
  36. (36).
    J. Hopken and M. Moller, Macromolecules, 25, 1461 (1992).CrossRefGoogle Scholar
  37. (37).
    K. Li, P. P. Wu, and Z. W. Han, Polymer, 43, 4079 (2002).CrossRefGoogle Scholar
  38. (38).
    Z. Yan, W. Liu, N. Gao, Z. Ma, and M. Han, J. Fluorine Chem., 147, 49 (2013).CrossRefGoogle Scholar
  39. (39).
    Z. Yan, W. Liu, N. Gao, H. Wang, and K. Su, Appl. Surf. Sci., 284, 683 (2013).CrossRefGoogle Scholar
  40. (40).
    I. J. Park, S. B. Lee, and C. K. Choi, Macromolecules, 31, 7555 (1998).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  • Hongyi Shi
    • 1
    • 2
    • 3
  • Weiqu Liu
    • 1
    • 2
    Email author
  • Maiping Yang
    • 1
    • 2
    • 3
  • Xinsheng Liu
    • 1
    • 2
    • 3
  • Yankun Xie
    • 1
    • 2
    • 3
  • Zhengfang Wang
    • 1
    • 2
  1. 1.Guangzhou Institute of ChemistryChinese Academy of SciencesGuangzhouP. R. China
  2. 2.Key Laboratory of Cellulose and Lignocellulosics ChemistryChinese Academy of SciencesGuangzhouP. R. China
  3. 3.University of Chinese Academy of SciencesBeijingP. R. China

Personalised recommendations