Label-Free Detection of Dopamine based on Photoluminescence of Boronic Acid-Functionalized Carbon Dots in Solid-State Polyethylene Glycol Thin Film

Abstract

Reactive boronic acid-functionalized carbon dots (rBA-CDs) for dopamine (DA) detection were prepared by solvothermal synthesis of CDs using lactose and diacrylate polyethylene glycol (DAPEG) and subsequent 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide coupling with 3-aminophenylboronic acid. The solid-state thin film of the DAPEG/rBA-CD composite was prepared on an acrylate-functionalized glass substrate by ultraviolet curing. The rBA-CD in the solid-state PEG thin film on the glass substrate showed excellent DA detection performance in the presence of small amounts of DA by fluorescence color change from blue to green when excited at 360 nm. The fluorescence intensity increased as the DA concentration increased, with a linear detection range of 0–40 μM and a limit of detection of 0.2 μM. The developed solid-state fluorescent sensor offered high selectivity for DA over other components (e.g., glucose, lactose, ascorbic acid, urea, and uric acid) in blood. Furthermore, real samples of human serum spiked with dopamine showed excellent recovery. Thus, the designed reactive rBA-CDs can be utilized as a DA biosensor on a solid substrate after their immobilization. Owing to their good water dispersity, fluorescence color change, and reactive nature, rBA-CDs may provide a new strategy for the naked eye detection of dopamine.

This is a preview of subscription content, access via your institution.

References

  1. (1)

    F. Mora, G. Segovia, A. del Arco, M. de Blas, and P. Garrido, Brain Res., 1476, 71 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. (2)

    B. E. Toth, M. Vecsernyes, T. Zelles, K. Kadar, and G. M. Nagy, Adv. Neuroimmune Biol., 3, 111 (2012).

    Google Scholar 

  3. (3)

    S. Moriya, J. Inamasu, M. Oheda, and Y. Hirose, Ann. Pediatr. Cardiol., 8, 240 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  4. (4)

    L. C. Schwab, S. N. Garas, J. Drouin-Ouellet, S. L. Mason, S. R. Stott, and R. A. Barker, Expert Rev. Neurothe., 15, 445 (2015).

    Article  CAS  Google Scholar 

  5. (5)

    D. E. Lilienfeld and D. P. Perl, Neuroepidemiology, 12, 219 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. (6)

    B.-R. Li, Y.-J. Hsieh, Y.-X. Chen, Y.-T. Chung, C.-Y. Pan, and Y.-T. Chen, J. Am. Chem. Soc., 135, 16034 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. (7)

    T. Pradhan, H. S. Jung, J. H. Jang, T. W. Kim, C. Kang, and J. S. Kim, Chem. Soc. Rev., 43, 4684 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. (8)

    S. Shi, L. Wang, R. Su, B. Liu, R. Huang, W. Qi, and Z. He, Biosens. Bioelectron., 74, 454 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. (9)

    B. Verastegui-Omaña, M. Palomar-Pardavé, A. Rojas-Hernández, S. C. Avendaño, M. Romero-Romo, and M. T. Ramírez-Silva, Spectrochim. Acta A, 143, 187 (2015).

    Article  CAS  Google Scholar 

  10. (10)

    D. Zhang, L. Wu, D. S. L. Chow, V. H. Tam, and D. R. Rios, J. Pharm. Biomed. Anal., 117, 227 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. (11)

    G. D. Watt, Anal. Biochem., 99, 399 (1979).

    Article  CAS  PubMed  Google Scholar 

  12. (12)

    M. E. Germain and M. J. Knapp, Chem. Soc. Rev., 38, 2543 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. (13)

    S. N. Baker and G. A. Baker, Angew. Chem. Int. Ed., 49, 6726 (2010).

    Article  CAS  Google Scholar 

  14. (14)

    P. Zhang, W. Li, X. Zhai, C. Liu, L. Dai, and W. Liu, Chem. Commun., 48, 10431 (2012).

    Article  CAS  Google Scholar 

  15. (15)

    H. M. R. Gonçalves, A. J. Duarte, and J. C. G. Esteves da Silva, Biosens. Bioelectron., 26, 1302 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. (16)

    X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, K. Raker, and W. A. Scrivens, J. Am. Chem. Soc., 126, 12736 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. (17)

    S. Hu, J. Liu, J. Yang, Y. Wang, and S. Cao, J. Nanoparticle Res., 13, 7247 (2011).

    Article  CAS  Google Scholar 

  18. (18)

    S. C. Ray, A. Saha, N. R. Jana, and R. Sarkar, J. Phys. Chem. C, 113, 18546 (2009).

    Article  CAS  Google Scholar 

  19. (19)

    L. Tian, D. Ghosh, W. Chen, S. Pradhan, X. Chang, and S. Chen, Chem. Mater., 21, 2803 (2009).

    Article  CAS  Google Scholar 

  20. (20)

    L. Bao, Z.-L. Zhang, Z.-Q. Tian, L. Zhang, C. Liu, Y. Lin, B. Qi, and D.-W. Pang, Adv. Mater., 23, 5801 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. (21)

    V. Strauss, J. T. Margraf, C. Dolle, B. Butz, T. J. Nacken, J. Walter, W. Bauer, W. Peukert, E. Spiecker, T. Clark, and D. M. Guldi, J. Am. Chem. Soc., 136, 17308 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. (22)

    H. Zhu, X. Wang, Y. Li, Z. Wang, F. Yang, and X. Yang, Chem. Commun., 5118 (2009).

    Google Scholar 

  23. (23)

    Y. Dong, G. Li, N. Zhou, R. Wang, Y. Chi, and G. Chen, Anal. Chem., 84, 8378 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. (24)

    S. Palanisamy, X. Zhang, and T. He, J. Mater. Chem. B, 3, 6019 (2015).

    Article  CAS  Google Scholar 

  25. (25)

    W. Scarano, H. T. T. Duong, H. Lu, P. L. De Souza, and M. H. Stenzel, Biomacromolecules, 14, 962 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. (26)

    A. Coskun and E. U. Akkaya, Org. Lett., 6, 3107 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. (27)

    K. E. Secor and T. E. Glass, Org. Lett., 6, 3727 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. (28)

    S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H. Wang, and B. Yang, Angew. Chem. Int. Ed., 52, 3953 (2013).

    Article  CAS  Google Scholar 

  29. (29)

    M.-H. Yang, S.-S. Yuan, T.-W. Chung, S.-B. Jong, C.-Y. Lu, W.-C. Tsai, W.- C. Chen, P.-C. Lin, P.-W. Chiang, and Y.-C. Tyan, Biomed Res. Int., 2014, 209469 (2014).

    PubMed  PubMed Central  Google Scholar 

  30. (30)

    X. Liu, X. Hu, Z. Xie, P. Chen, X. Sun, J. Yan, and S. Zhou, Anal. Methods, 8, 3236 (2016).

    Article  CAS  Google Scholar 

  31. (31)

    J. Zhao, C. Liu, Y. Li, J. Liang, J. Liu, T. Qian, J. Ding, and Y.-C. Cao, Luminescence, 32, 625 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. (32)

    Y. Song, S. Zhu, and B. Yang, RSC Adv., 4, 27184 (2014).

    Article  CAS  Google Scholar 

  33. (33)

    J. S. Anjali Devi, A. H. Anulekshmi, S. Salini, R. S. Aparna, and S. George, Microchim. Acta, 184, 4081 (2017).

    Article  CAS  Google Scholar 

  34. (34)

    Y. Liu, N. Xiao, N. Gong, H. Wang, X. Shi, W. Gu, and L. Ye, Carbon, 68, 258 (2014).

    Article  CAS  Google Scholar 

  35. (35)

    C. Nazli, T. I. Ergenc, Y. Yar, H. Y. Acar, and S. Kizilel, Int. J. Nanomedicine, 7, 1903 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. (36)

    T. T. Bui and S.-Y. Park, Green Chem., 18, 4245 (2016).

    Article  CAS  Google Scholar 

  37. (37)

    M.-J. Cho and S.-Y. Park, ACS Appl. Mater. Interfaces, 9, 24169 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. (38)

    M. Fu, F. Ehrat, Y. Wang, K. Z. Milowska, C. Reckmeier, A. L. Rogach, J. K. Stolarczyk, A. S. Urban, and J. Feldmann, Nano Lett., 15, 6030 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. (39)

    H. Nie, M. Li, Q. Li, S. Liang, Y. Tan, L. Sheng, W. Shi, and S. X.-A. Zhang, Chem. Mater., 26, 3104 (2014).

    Article  CAS  Google Scholar 

  40. (40)

    M. O. Dekaliuk, O. Viagin, Y. V. Malyukin, and A. P. Demchenko, Phys. Chem. Chem. Phys., 16, 16075 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. (41)

    X. Wen, P. Yu, Y.-R. Toh, X. Hao, and J. Tang, Adv. Opt. Mater., 1, 173 (2013).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Soo-Young Park.

Additional information

Acknowledgments: The National Research Foundation of Korea (2017R1A2B2006818), Korea Institute of Energy Technology Evaluation Planning of Korea (KETEP-20163010032040) supported this work.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, GY., Munir, S. & Park, SY. Label-Free Detection of Dopamine based on Photoluminescence of Boronic Acid-Functionalized Carbon Dots in Solid-State Polyethylene Glycol Thin Film. Macromol. Res. 26, 1150–1159 (2018). https://doi.org/10.1007/s13233-019-7025-4

Download citation

Keywords

  • carbon dot
  • boronic acid
  • biosensor
  • dopamine
  • quantum dot