Advertisement

Macromolecular Research

, Volume 27, Issue 2, pp 126–139 | Cite as

Polymer Electrolyte from Natural Rubber-Polyacrylic Acid and Polypyrrole and Its Application

  • Pensiri Silakul
  • Rathanawan MagaraphanEmail author
Article
  • 27 Downloads

Abstract

A polymer host was prepared by admicellar polymerization of acrylic acid (AA) monomer coated on natural rubber (NR) to form a core-shell material (PAA-adp-NR). To form a polymer electrolyte, the electrical properties, including ionic conductivity and photovoltaic property, were measured to study the potential for use in the dye sensitized solar cells (DSSCs). PAA-adp-NR having the highest shell content (62%) showed the maximum ionic conductivity and energy conversion efficiency (η) at 1.86 mS cm-1 and 1.80%, respectively. The crosslinked structure of 62PAA-adp-NR provided η up to 1.99% (AA:N-methylene bisacrylamide (NMBA) at 500:1 mole ratio) and enhanced a long-term material stability. After oxidative polymerization with polypyrrole (PPy) on 62PAA-adp-NR, the conductivity increased up to 2.43 mS cm-1. In the case of crosslinked PAA-adp-NR/PPy, the conductivity and η showed the highest value at 5.48 mS cm-1 (AA:NMBA at 100:1 mole ratio) and 2.38% (AA:NMBA at 500:1 mole ratio), respectively.

Keywords

core-shell polymers hydrophilic polymers crosslink polypyrrole photochemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    M. Grätzel, J. Photochem. Photobiol. C: Photochem. Rev., 4, 145 (2003).CrossRefGoogle Scholar
  2. (2).
    J.-A. He, R. Mosurkal, L. A. Samuelson, L. Li, and J. Kumar, Langmuir, 19, 2169 (2003).CrossRefGoogle Scholar
  3. (3).
    S. H. Lee, D. W. Seo, Y. D. Lim, Y. T. Jeon, H. H. Joo, S. Y. Lee, J. S. Lim, and W. G. Kim, Macromol. Res., 21, 732 (2013).CrossRefGoogle Scholar
  4. (4).
    K. W. Chew, T. C. Ng, and Z. H. How, Int. J. Electrochem. Sci., 8, 6354 (2013).Google Scholar
  5. (5).
    Z. Lan, J. Wu, S. Hao, J. Lin, M. Huang, and Y. Huang, Energy Environ. Sci., 2, 524 (2009).CrossRefGoogle Scholar
  6. (6).
    S. Yuan, Q. Tang, B. He, and P. Yang, J. Power Sources, 254, 98 (2014).CrossRefGoogle Scholar
  7. (7).
    K.-F. Chen, C.-H. Liu, H.-K. Huang, C.-H. Tsai, and F.-R. Chen, Int. J. Electrochem. Sci., 8, 3524 (2013).Google Scholar
  8. (8).
    D. Wei, Int. J. Mol. Sci., 11, 1103 (2010).CrossRefGoogle Scholar
  9. (9).
    M. K. Kwang, S. R. Kwang, K. Seong-Gu, H. C. Soon, and J. C. In, Macromol. Chem. Phys., 202, 866 (2001).CrossRefGoogle Scholar
  10. (10).
    J. S. Park, Y. H. Kim, M. Song, C.-H. Kim, M. A. Karim, J. W. Lee, Y.-S. Gal, P. Kumar, S.-W. Kang, and S.-H. Jin, Macromol. Chem. Phys., 211, 2464 (2010).CrossRefGoogle Scholar
  11. (11).
    V. Somsongkul, C. Saekung, S. H. Thang, A. Wongchaisuwat, and M. Arunchaiya, Chiang Mai J. Sci., 38, 223 (2011).Google Scholar
  12. (12).
    X. Liu, X. Li, Z. Lu, X. Miao, and Y. Feng, J. Polym. Res., 18, 897 (2011).CrossRefGoogle Scholar
  13. (13).
    J. Wu, Z. Lan, S. Hao, P. Li, J. Lin, M. Huang, L. Fang, and Y. Huang, Pure Appl. Chem., 80, 2241 (2008).CrossRefGoogle Scholar
  14. (14).
    O. Okay, S. Durmaz, and B. Erman, Macromolecules, 33, 4822 (2000).CrossRefGoogle Scholar
  15. (15).
    H.-L. Lu, T. F. R. Shen, S.-T. Huang, Y.-L. Tung, and T. C. K. Yang, Sol. Energy Mater. Sol. Cells, 95, 1624 (2011).CrossRefGoogle Scholar
  16. (16).
    J. Joseph, K. M. Son, R. Vittal, W. Lee, and K.-J. Kim, Semicond. Sci. Technol., 21, 697 (2006).CrossRefGoogle Scholar
  17. (17).
    K. Norrman, M. V. Madsen, S. A. Gevorgyan, and F. C. Krebs, J. Am. Chem. Soc., 132, 16883 (2010).CrossRefGoogle Scholar
  18. (18).
    O. Moudam and S. Villarroya-Lidon, J. Sol. Energ., 2014, 7 (2014).Google Scholar
  19. (19).
    A. M. M. Ali, R. H. Y. Subban, H. Bahron, M. Z. A. Yahya, and A. S. Kamisan, J. Power Sources, 244, 636 (2013).CrossRefGoogle Scholar
  20. (20).
    R. Idris, M. D. Glasse, R. J. Latham, R. G. Linford, and W. S. Schlindwein, J. Power Sources, 94, 206 (2001).CrossRefGoogle Scholar
  21. (21).
    K. Bunsomsit, R. Magaraphan, E. A. O'Rear, and B. P. Grady, Colloid Polym. Sci., 280, 509 (2002).CrossRefGoogle Scholar
  22. (22).
    J. Baran, M. Drozd, T. A. Gavrilko, and V. I. Styopkin, Ukr. J. Phys., 59, 303 (2014).CrossRefGoogle Scholar
  23. (23).
    H. Bi, G. Sui, and X. Yang, J. Power Sources, 267, 309 (2014).CrossRefGoogle Scholar
  24. (24).
    Y. l. Chen, J. l. Zhao, G. Li, and Z. d. He, 2011 Int. Conference on Materials for Renew. Energy Environ., 1, 725 (2011).CrossRefGoogle Scholar
  25. (25).
    F. Roghanizad and M. Rafizadeh, Ionics, 21, 2789 (2015).CrossRefGoogle Scholar
  26. (26).
    A. A. Mohamad, J. Power Sources, 329, 57 (2016).CrossRefGoogle Scholar
  27. (27).
    Z. Lan, J. Wu, J. Lin, and M. Huang, J.Power Sources, 164, 921 (2007).CrossRefGoogle Scholar
  28. (28).
    R. Boonsin, J. Sudchanham, N. Panusophon, P. Sae-Heng, C. Sae-Kung, and P. Pakawatpanurut, Mater. Chem. Phys., 132, 993 (2012).CrossRefGoogle Scholar
  29. (29).
    F. Bella, E. D. Ozzello, S. Bianco, and R. Bongiovanni, Chem. Eng. J., 225, 873 (2013).CrossRefGoogle Scholar
  30. (30).
    I. Katime, E. D. de Apodaca, and E. Rodríguez, J. Appl. Polym. Sci., 102, 4016 (2006).CrossRefGoogle Scholar
  31. (31).
    Y. Wang, B. Li, J. Ji, and W.-H. Zhong, J. Power Sources, 247, 452 (2014).CrossRefGoogle Scholar
  32. (32).
    A. K. Bajpai, J. Bajpai, and S. N. Soni, Express Polym. Lett., 2, 26 (2008).CrossRefGoogle Scholar
  33. (33).
    R. Prabhakar and D. Kumar, Am. J.Polym. Sci. Eng., 2, 1 (2015).Google Scholar
  34. (34).
    Z. Tang, J. Wu, Q. Li, Z. Lan, L. Fan, J. Lin, and M. Huang, Electrochim. Acta, 55, 4883 (2010).CrossRefGoogle Scholar
  35. (35).
    J. Ferguson, S. Al-Alawi, and R. Granmayeh, Eur. Polym. J., 19, 475 (1983).CrossRefGoogle Scholar
  36. (36).
    Y. Luo, J. Guo, Y. Liu, Q. Shao, C. Wang, and D. Chu, J. Membr. Sci., 423-424, 209 (2012).CrossRefGoogle Scholar
  37. (37).
    A. Pongpilaipruet and R. Magaraphan, Mater. Chem. Phys., 160, 194 (2015).CrossRefGoogle Scholar
  38. (38).
    A. Kostic, B. Adnadjevic, A. Popovic, and J. Jovanovic, J. Serb. Chem. Soc., 72, 1139 (2007).CrossRefGoogle Scholar
  39. (39).
    Z. Tang, Q. Liu, Q. Tang, J. Wu, J. Wang, S. Chen, C. Cheng, H. Yu, Z. Lan, J. Lin, and M. Huang, Electrochim. Acta, 58, 52 (2011).CrossRefGoogle Scholar
  40. (40).
    A. Hauch and A. Georg, Electrochim. Acta, 46, 3457 (2001).CrossRefGoogle Scholar
  41. (41).
    J. Ambreen, J. Yang, X. Ye, and M. Siddiq, Colloid Polym. Sci., 291, 919 (2013).CrossRefGoogle Scholar
  42. (42).
    C.-Y. Chuang, T.-M. Don, and W.-Y. Chiu, J. Appl. Polym. Sci., 109, 3382 (2008).CrossRefGoogle Scholar
  43. (43).
    E. Grzadka and S. Chibowski, Physicochem. Probl. Mineral Pro., 43, 31 (2009).Google Scholar
  44. (44).
    S. Chibowski, E. Grzadka, and J. Patkowski, Croat. Chem. Acta, 82, 623 (2009).Google Scholar
  45. (45).
    J. L. Viota, J. de Vicente, J. D. G. Durán, and A. V. Delgado, J. Colloid Interface Sci., 284, 527 (2005).CrossRefGoogle Scholar
  46. (46).
    P. S. Bhosale, J. Chun, and J. C. Berg, J. Colloid Interface Sci., 358, 123 (2011).CrossRefGoogle Scholar
  47. (47).
    A. Kongkaew and J. Wootthikanokkhan, ScienceAsia, 25, 35 (1999).CrossRefGoogle Scholar
  48. (48).
    L. J. Kirwan, P. D. Fawell, and W. van Bronswijk, Langmuir, 19, 5802 (2003).CrossRefGoogle Scholar
  49. (49).
    S. Bennour and F. Louzri, Adv. Chem., 10 (2014).Google Scholar
  50. (50).
    D. Zhang, Q. Zhang, X. Gao, and G. Piao, J. Appl. Polym. Sci., 2013, 6 (2013).Google Scholar
  51. (51).
    J. Wu, J. Lin, M. Zhou, and C. Wei, Macromol. Rapid Commun., 21, 1032 (2000).CrossRefGoogle Scholar
  52. (52).
    M. A. Smirnov, N. V. Bobrova, I. Y. Dmitriev, V. Bukolšek, and G. K. Elyashevich, Polym. Sci. Ser. A, 53, 67 (2011).CrossRefGoogle Scholar
  53. (53).
    Z. Tang, J. Wu, Q. Liu, M. Zheng, Q. Tang, Z. Lan, and J. Lin, J.Power Sources, 203, 282 (2012).CrossRefGoogle Scholar
  54. (54).
    E. Aram, M. Ehsani, and H. A. Khonakdar, Thermochim. Acta, 615, 61 (2015).CrossRefGoogle Scholar
  55. (55).
    S. Sathiyaraj, M. Vanjinathan, A. Shanavas, S. Amudha, S. A. Suthanthiraraj, and A. S. Nasar, J. Appl. Polym. Sci., 131, 1 (2014).CrossRefGoogle Scholar
  56. (56).
    C.-H. Yang, W.-Y. Ho, H.-H. Yang, and M.-L. Hsueh, J. Mater. Chem., 20, 6080 (2010).CrossRefGoogle Scholar
  57. (57).
    H. J. Shim, D. W. Kim, C. Lee, Y. Kang, and D. H. Suh, Macromol. Res., 16, 424 (2008).CrossRefGoogle Scholar
  58. (58).
    D. F. Miranda, C. Versek, M. T. Tuominen, T. P. Russell, and J. J. Watkins, Macromolecules, 46, 9313 (2013).CrossRefGoogle Scholar
  59. (59).
    H.-C. Chien, L.-D. Tsai, C.-M. Lai, J.-N. Lin, C.-Y. Zhu, and F.-C. Chang, J. Power Sources, 226, 87 (2013).CrossRefGoogle Scholar
  60. (60).
    Q. Li, X. Chen, Q. Tang, H. Xu, B. He, and Y. Qin, J. Mater. Chem. A, 1, 8055 (2013).CrossRefGoogle Scholar
  61. (61).
    M. K. Parvez, I. In, J. M. Park, S. H. Lee, and S. R. Kim, Sol. Energ. Mater. Sol. Cells, 95, 318 (2011).CrossRefGoogle Scholar
  62. (62).
    N. Bar and P. Basak, J. Phys. Chem. C, 118, 20807 (2014).CrossRefGoogle Scholar
  63. (63).
    T. M. W. J. Bandara, H. D. N. S. Fernando, M. Furlani, I. Albinsson, M. A. K. L. Dissanayake, J. L. Ratnasekera, and B. E. Mellander, Phys. Chem. Chem. Phys., 18, 10873 (2016).CrossRefGoogle Scholar
  64. (64).
    P. Nagaraj, A. Sasidharan, V. David, and A. Sambandam, Polymers, 9, 667 (2017).CrossRefGoogle Scholar
  65. (65).
    J. Won, S. M. Ahn, H. D. Cho, J. Y. Ryu, H. Y. Ha, and Y. S. Kang, Macromol. Res., 15, 459 (2007).CrossRefGoogle Scholar
  66. (66).
    Y. A. Dubitsky, E. A. Becturov, and B. A. Zhubanov, Mater. Chem. Phys., 34, 306 (1993).CrossRefGoogle Scholar
  67. (67).
    P. Chansai, A. Sirivat, S. Niamlang, D. Chotpattananont, and K. Viravaidya-Pasuwat, Int. J. Pharm., 381, 25 (2009).CrossRefGoogle Scholar
  68. (68).
    D. Bari, N. Wrachien, R. Tagliaferro, S. Penna, T. M. Brown, A. Reale, A. Di Carlo, G. Meneghesso, and A. Cester, Microelectron. Reliab., 51, 1762 (2011).CrossRefGoogle Scholar
  69. (69).
    A. Li, A. Wang, and J. Chen, J. Appl. Polym. Sci., 94, 1869 (2004).CrossRefGoogle Scholar
  70. (70).
    H. L. A. El-Mohdy, E. S. A. Hegazy, and H. A. Abd El-Rehim, J. Macromol. Sci., Part A, 43, 1051 (2006).CrossRefGoogle Scholar
  71. (71).
    H. M. L. Thijs, C. R. Becer, C. Guerrero-Sanchez, D. Fournier, R. Hoogenboom, and U. S. Schubert, J. Mater. Chem., 17, 4864 (2007).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  1. 1.The Petroleum and Petrochemical CollegeChulalongkorn UniversityPatumwan, BangkokThailand
  2. 2.Polymer Processing and Polymer Nanomaterials Research UnitPetroleum and Petrochemical College, Chulalongkorn UniversityBangkokThailand
  3. 3.Center of Excellence on Petrochemical and Materials TechnologyBangkokThailand
  4. 4.Green Materials for Industrial Application Research UnitFaculty of Science, Chulalongkorn UniversityBangkokThailand

Personalised recommendations