Nanoparticles Based on Poly(trimethylene carbonate) Triblock Copolymers with Post-Crystallization Ability and Their Degradation in vitro

Abstract

Aliphatic polycarbonate-based block copolymers have received considerable attention as carriers for targeted drug and gene delivery because of their biocompatibility and biodegradability. However, there is little understanding of their phase behaviour and physicochemical characterization of the particles made from them. Here, we prepared a series of well-defined poly(trimethylene carbonate) (PTMC)-based copolymers with molar masses of 3–9 kg·mol-1 by metal-free ring-opening polymerization using dihydroxy-terminated poly(ethylene oxide) as a macroinitiator. Micellar nanoparticles self-assembled from copolymers had a size of less than 130 nm. They were degraded by the action of a model lipase from Mucor Miehei at 37 °C, which is of high importance for biodegradability in the living organism. X-ray diffraction and differential scanning calorimetry proved that amorphous copolymers with more than 39 mol% of carbonate units and representative particles were prone to the rearrangement of PTMC chains during storage and to thus undergo post-crystallization. Our findings can contribute to the comprehensive characterization of polycarbonate biomaterials for medical applications.

This is a preview of subscription content, log in to check access.

References

  1. (1)

    S. B. Blanquer, S. Sharifi, and D. W. Grijpma, J. Appl. Biomater. Funct. Mater., 10 (2012).

    Google Scholar 

  2. (2)

    L. Timbart, M. Y. Tse, S. C. Pang, O. Babasola, and B. G. Amsden, Macromol. Biosci., 9, 786 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. (3)

    A. D. Messias, K. F. Martins, A. C. Motta, and E. A. d. R. Duek, Int. J. Biomater., 2014 (2014).

    Google Scholar 

  4. (4)

    A. Leeuwen, H. Yuan, G. Passanisi, J. Meer, J. Bruijn, T. Kooten, D. Grijpma, and R. Bos, Eur. Cells Mater., 27, 81 (2014).

    Article  Google Scholar 

  5. (5)

    K. Fukushima, Biomater. Sci., 4, 9 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. (6)

    R. R. Vogels, J. W. Bosmans, K. W. van Barneveld, V. Verdoold, S. van Rijn, M. J. Gijbels, J. Penders, S. O. Breukink, D. W. Grijpma, and N. D. Bouvy, Surgery, 157, 1113 (2015).

    Article  PubMed  Google Scholar 

  7. (7)

    Z. Zhang, R. Kuijer, S. K. Bulstra, D. W. Grijpma, and J. Feijen, Biomater–ials, 27, 1741 (2006).

    Article  CAS  Google Scholar 

  8. (8)

    A. C. Albertsson and M. Eklund, J. Appl. Polym. Sci., 57, 87 (1995).

    Article  CAS  Google Scholar 

  9. (9)

    O. S. Kluin, H. C. van der Mei, H. J. Busscher, and D. Neut, Biomaterials, 30, 4738 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. (10)

    M. S. Kim, H. Hyun, B. S. Kim, G. Khang, and H. B. Lee, Current Appl. Phys., 8, 646 (2008).

    Article  Google Scholar 

  11. (11)

    D. Neut, O. S. Kluin, B. J. Crielaard, H. C. van der Mei, H. J. Busscher, and D. W. Grijpma, Acta Orthop., 80, 514 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  12. (12)

    S. J. Buwalda, L. B. Perez, S. Teixeira, L. Calucci, C. Forte, J. Feijen, and P. J. Dijkstra, Biomacromolecules, 12, 2746 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. (13)

    F. Nederberg, J. Watanabe, K. Ishihara, J. Hilborn, and T. Bowden, J. Biomater. Sci., Polym. Ed., 17, 605 (2006).

    Article  CAS  Google Scholar 

  14. (14)

    A.–C. Albertsson, A. Löfgren, C. Sturesson, and M. Sjöling, Design of New Building Blocks in Resorbable Polymers, ACS Publications, 1992.

    Google Scholar 

  15. (15)

    H. Wang, J. H. Dong, A. Y. Qiu, and Z. W. Gu, J. Macromol. Sci., Part A, 35, 811 (1998).

    Article  Google Scholar 

  16. (16)

    Y. Zhang and R.–X. Zhuo, Biomaterials, 26, 2089 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. (17)

    Y. Zhang, H. F. Chan, and K. W. Leong, Adv. Drug Deliv. Rev., 65, 104 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. (18)

    Y. K. Feng and S. F. Zhang, J. Polym. Sci., Part A: Polym. Chem., 43, 4819 (2005).

    Article  CAS  Google Scholar 

  19. (19)

    Z. Zhang, D. W. Grijpma, and J. Feijen, J. Control. Release, 116, e28 (2006).

    Google Scholar 

  20. (20)

    X. Jiang, H. Xin, X. Sha, J. Gu, Y. Jiang, K. Law, Y. Chen, L. Chen, X. Wang, and X. Fang, Int. J. Pharm., 420, 385 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. (21)

    G. Mittal, D. K. Sahana, V. Bhardwaj, and M. N. V. Ravi Kumar, J. Control. Release, 119, 77 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. (22)

    V. Karavelidis, E. Karavas, D. Giliopoulos, S. Papadimitriou, and D. Bikiaris, Int. J. Nanomedicine, 6, 3021 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. (23)

    H. Hyun, M. S. Kim, G. Khang, and H. B. Lee, J. Polym. Sci., Part A: Polym. Chem., 44, 4235 (2006).

    Article  CAS  Google Scholar 

  24. (24)

    L. Liao, C. Zhang, and S. Gong, React. Funct. Polym., 68, 751 (2008).

    Article  CAS  Google Scholar 

  25. (25)

    J. Gross, S. Sayle, A.R. Karow, U. Bakowsky, and P. Garidel, Eur. J. Pharm. Biopharm., 104, 30 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. (26)

    C. Perez, A. Sanchez, D. Putnam, D. Ting, R. Langer, and M. J. Alonso, J. Control. Release, 75, 211 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. (27)

    J. Trousil, S. K. Filippov, M. Hrubý, T. Mazel, Z. Syrová, D. Cmarko, S. Svidenská, J. Matějková, L. Kováčik, B. Porsch, R. Konefał, R. Lund, B. Nyström, I. Raška, and P. Štěpánek, Nanomedicine, 13, 307 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. (28)

    Y. Wan, Z. Gan, and Z. Li, Polym. Chem., 5, 1720 (2014).

    Article  CAS  Google Scholar 

  29. (29)

    H. Yao, J. Li, N. Li, K. Wang, X. Li, and J. Wang, Polymers, 9, 598 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  30. (30)

    J. Li, X. Li, X. Ni, and K.W. Leong, Macromolecules, 36, 2661 (2003).

    Article  CAS  Google Scholar 

  31. (31)

    A. K. Mohanty, U. Jana, P. K. Manna, and G. P. Mohanta, Prog. Biomaterials, 4, 89 (2015).

    Article  CAS  Google Scholar 

  32. (32)

    S. J. Lee, S. S. Kim, and Y. M. Lee, Carbohydr. Polym., 41, 197 (2000).

    Article  Google Scholar 

  33. (33)

    K. J. Zhu, R. W. Hendren, K. Jensen, and C. G. Pitt, Macromolecules, 24, 1736 (1991).

    Article  CAS  Google Scholar 

  34. (34)

    C. He, Y. Hu, L. Yin, C. Tang, and C. Yin, Biomaterials, 31, 3657 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. (35)

    A. Mayer, M. Vadon, B. Rinner, A. Novak, R. Wintersteiger, and E. Fröhlich, Toxicology, 258, 139 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. (36)

    K. Letchford and H. M. Burt, Mol. Pharm., 9, 248 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. (37)

    J. Logie, S. C. Owen, C. K. McLaughlin, and M. S. Shoichet, Chem. Mater., 26, 2847 (2014).

    Article  CAS  Google Scholar 

  38. (38)

    R. A. Dragovic, C. Gardiner, A. S. Brooks, D. S. Tannetta, D. J. Ferguson, P. Hole, B. Carr, C. W. Redman, A. L. Harris, and P. J. Dobson, Nanomedicine, 7, 780 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. (39)

    C. Gardiner, Y. J. Ferreira, R. A. Dragovic, C. W. Redman, and I. L. Sargent, J. Extracell. Vesicles, 2, 19671 (2013).

    Article  CAS  Google Scholar 

  40. (40)

    S. L. N. Maas, J. de Vrij, E. J. van der Vlist, B. Geragousian, L. van Bloois, E. Mastrobattista, R. M. Schiffelers, M. H. M. Wauben, M. L. D. Broekman, and E. N. M. Nolte’t Hoen, J. Control. Release, 200, 87 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. (41)

    B. Carr, P. Hole, A. Malloy, P. Nelson, and J. Smith, Eur. J. Parenter. Sci. Pharm. Sci., 14, 45 (2009).

    Google Scholar 

  42. (42)

    F. De Jaeghere, E. Allémann, J.–C. Leroux, W. Stevels, J. Feijen, E. Doelker, and R. Gurny, Pharm. Res., 16, 859 (1999).

    Article  PubMed  Google Scholar 

  43. (43)

    W. Abdelwahed, G. Degobert, S. Stainmesse, and H. Fessi, Adv. Drug Deliv. Rev., 58, 1688 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. (44)

    Y. Tabata and Y. Ikada, in New Polymer Materials, Springer 1990, pp 107–141.

    Google Scholar 

  45. (45)

    A. Kawashima, K. Tanigawa, T. Akama, H. Wu, M. Sue, A. Yoshihara, Y. Ishido, K. Kobiyama, F. Takeshita, K.J. Ishii, H. Hirano, H. Kimura, T. Sakai, N. Ishii, and K. Suzuki, Endocrinology, 152, 1702 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. (46)

    H. Abdelkader, B. Pierscionek, and R.G. Alany, Int. J. Pharm., 477, 631 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. (47)

    T. L. Whiteside, A. Gambotto, A. Albers, J. Stanson, and E. P. Cohen, Proc. Natl. Acad. Sci., 99, 9415 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Soňa Hermanová.

Additional information

Acknowledgment: This work was supported by the project Advanced Functional Nanorobots (reg. No. CZ.02.1.01/0.0/0.0/15_003/0000444 financed by the EFRR) and from specific university research (MSMT No 21-SVV/2018).

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reinišová, L., Novotný, F., Pumera, M. et al. Nanoparticles Based on Poly(trimethylene carbonate) Triblock Copolymers with Post-Crystallization Ability and Their Degradation in vitro. Macromol. Res. 26, 1026–1034 (2018). https://doi.org/10.1007/s13233-019-7007-6

Download citation

Keywords

  • amphiphilic copolymers
  • crystallization
  • self-assembly
  • enzyme degradation