Advertisement

Macromolecular Research

, Volume 26, Issue 11, pp 1026–1034 | Cite as

Nanoparticles Based on Poly(trimethylene carbonate) Triblock Copolymers with Post-Crystallization Ability and Their Degradation in vitro

  • Lucie Reinišová
  • Filip Novotný
  • Martin Pumera
  • Katarína Kološtová
  • Soňa Hermanová
Article

Abstract

Aliphatic polycarbonate-based block copolymers have received considerable attention as carriers for targeted drug and gene delivery because of their biocompatibility and biodegradability. However, there is little understanding of their phase behaviour and physicochemical characterization of the particles made from them. Here, we prepared a series of well-defined poly(trimethylene carbonate) (PTMC)-based copolymers with molar masses of 3–9 kg·mol-1 by metal-free ring-opening polymerization using dihydroxy-terminated poly(ethylene oxide) as a macroinitiator. Micellar nanoparticles self-assembled from copolymers had a size of less than 130 nm. They were degraded by the action of a model lipase from Mucor Miehei at 37 °C, which is of high importance for biodegradability in the living organism. X-ray diffraction and differential scanning calorimetry proved that amorphous copolymers with more than 39 mol% of carbonate units and representative particles were prone to the rearrangement of PTMC chains during storage and to thus undergo post-crystallization. Our findings can contribute to the comprehensive characterization of polycarbonate biomaterials for medical applications.

Keywords

amphiphilic copolymers crystallization self-assembly enzyme degradation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13233_2019_7007_MOESM1_ESM.pdf (463 kb)
Supporting Information

References

  1. (1).
    S. B. Blanquer, S. Sharifi, and D. W. Grijpma, J. Appl. Biomater. Funct. Mater., 10 (2012).Google Scholar
  2. (2).
    L. Timbart, M. Y. Tse, S. C. Pang, O. Babasola, and B. G. Amsden, Macromol. Biosci., 9, 786 (2009).CrossRefGoogle Scholar
  3. (3).
    A. D. Messias, K. F. Martins, A. C. Motta, and E. A. d. R. Duek, Int. J. Biomater., 2014 (2014).Google Scholar
  4. (4).
    A. Leeuwen, H. Yuan, G. Passanisi, J. Meer, J. Bruijn, T. Kooten, D. Grijpma, and R. Bos, Eur. Cells Mater., 27, 81 (2014).CrossRefGoogle Scholar
  5. (5).
    K. Fukushima, Biomater. Sci., 4, 9 (2016).CrossRefGoogle Scholar
  6. (6).
    R. R. Vogels, J. W. Bosmans, K. W. van Barneveld, V. Verdoold, S. van Rijn, M. J. Gijbels, J. Penders, S. O. Breukink, D. W. Grijpma, and N. D. Bouvy, Surgery, 157, 1113 (2015).CrossRefGoogle Scholar
  7. (7).
    Z. Zhang, R. Kuijer, S. K. Bulstra, D. W. Grijpma, and J. Feijen, Biomater–ials, 27, 1741 (2006).CrossRefGoogle Scholar
  8. (8).
    A. C. Albertsson and M. Eklund, J. Appl. Polym. Sci., 57, 87 (1995).CrossRefGoogle Scholar
  9. (9).
    O. S. Kluin, H. C. van der Mei, H. J. Busscher, and D. Neut, Biomaterials, 30, 4738 (2009).CrossRefGoogle Scholar
  10. (10).
    M. S. Kim, H. Hyun, B. S. Kim, G. Khang, and H. B. Lee, Current Appl. Phys., 8, 646 (2008).CrossRefGoogle Scholar
  11. (11).
    D. Neut, O. S. Kluin, B. J. Crielaard, H. C. van der Mei, H. J. Busscher, and D. W. Grijpma, Acta Orthop., 80, 514 (2009).CrossRefGoogle Scholar
  12. (12).
    S. J. Buwalda, L. B. Perez, S. Teixeira, L. Calucci, C. Forte, J. Feijen, and P. J. Dijkstra, Biomacromolecules, 12, 2746 (2011).CrossRefGoogle Scholar
  13. (13).
    F. Nederberg, J. Watanabe, K. Ishihara, J. Hilborn, and T. Bowden, J. Biomater. Sci., Polym. Ed., 17, 605 (2006).CrossRefGoogle Scholar
  14. (14).
    A.–C. Albertsson, A. Löfgren, C. Sturesson, and M. Sjöling, Design of New Building Blocks in Resorbable Polymers, ACS Publications, 1992.Google Scholar
  15. (15).
    H. Wang, J. H. Dong, A. Y. Qiu, and Z. W. Gu, J. Macromol. Sci., Part A, 35, 811 (1998).CrossRefGoogle Scholar
  16. (16).
    Y. Zhang and R.–X. Zhuo, Biomaterials, 26, 2089 (2005).CrossRefGoogle Scholar
  17. (17).
    Y. Zhang, H. F. Chan, and K. W. Leong, Adv. Drug Deliv. Rev., 65, 104 (2013).CrossRefGoogle Scholar
  18. (18).
    Y. K. Feng and S. F. Zhang, J. Polym. Sci., Part A: Polym. Chem., 43, 4819 (2005).CrossRefGoogle Scholar
  19. (19).
    Z. Zhang, D. W. Grijpma, and J. Feijen, J. Control. Release, 116, e28 (2006).Google Scholar
  20. (20).
    X. Jiang, H. Xin, X. Sha, J. Gu, Y. Jiang, K. Law, Y. Chen, L. Chen, X. Wang, and X. Fang, Int. J. Pharm., 420, 385 (2011).CrossRefGoogle Scholar
  21. (21).
    G. Mittal, D. K. Sahana, V. Bhardwaj, and M. N. V. Ravi Kumar, J. Control. Release, 119, 77 (2007).CrossRefGoogle Scholar
  22. (22).
    V. Karavelidis, E. Karavas, D. Giliopoulos, S. Papadimitriou, and D. Bikiaris, Int. J. Nanomedicine, 6, 3021 (2011).Google Scholar
  23. (23).
    H. Hyun, M. S. Kim, G. Khang, and H. B. Lee, J. Polym. Sci., Part A: Polym. Chem., 44, 4235 (2006).CrossRefGoogle Scholar
  24. (24).
    L. Liao, C. Zhang, and S. Gong, React. Funct. Polym., 68, 751 (2008).CrossRefGoogle Scholar
  25. (25).
    J. Gross, S. Sayle, A.R. Karow, U. Bakowsky, and P. Garidel, Eur. J. Pharm. Biopharm., 104, 30 (2016).CrossRefGoogle Scholar
  26. (26).
    C. Perez, A. Sanchez, D. Putnam, D. Ting, R. Langer, and M. J. Alonso, J. Control. Release, 75, 211 (2001).CrossRefGoogle Scholar
  27. (27).
    J. Trousil, S. K. Filippov, M. Hrubý, T. Mazel, Z. Syrová, D. Cmarko, S. Svidenská, J. Matějková, L. Kováčik, B. Porsch, R. Konefał, R. Lund, B. Nyström, I. Raška, and P. Štěpánek, Nanomedicine, 13, 307 (2017).CrossRefGoogle Scholar
  28. (28).
    Y. Wan, Z. Gan, and Z. Li, Polym. Chem., 5, 1720 (2014).CrossRefGoogle Scholar
  29. (29).
    H. Yao, J. Li, N. Li, K. Wang, X. Li, and J. Wang, Polymers, 9, 598 (2017).CrossRefGoogle Scholar
  30. (30).
    J. Li, X. Li, X. Ni, and K.W. Leong, Macromolecules, 36, 2661 (2003).CrossRefGoogle Scholar
  31. (31).
    A. K. Mohanty, U. Jana, P. K. Manna, and G. P. Mohanta, Prog. Biomaterials, 4, 89 (2015).CrossRefGoogle Scholar
  32. (32).
    S. J. Lee, S. S. Kim, and Y. M. Lee, Carbohydr. Polym., 41, 197 (2000).CrossRefGoogle Scholar
  33. (33).
    K. J. Zhu, R. W. Hendren, K. Jensen, and C. G. Pitt, Macromolecules, 24, 1736 (1991).CrossRefGoogle Scholar
  34. (34).
    C. He, Y. Hu, L. Yin, C. Tang, and C. Yin, Biomaterials, 31, 3657 (2010).CrossRefGoogle Scholar
  35. (35).
    A. Mayer, M. Vadon, B. Rinner, A. Novak, R. Wintersteiger, and E. Fröhlich, Toxicology, 258, 139 (2009).CrossRefGoogle Scholar
  36. (36).
    K. Letchford and H. M. Burt, Mol. Pharm., 9, 248 (2012).CrossRefGoogle Scholar
  37. (37).
    J. Logie, S. C. Owen, C. K. McLaughlin, and M. S. Shoichet, Chem. Mater., 26, 2847 (2014).CrossRefGoogle Scholar
  38. (38).
    R. A. Dragovic, C. Gardiner, A. S. Brooks, D. S. Tannetta, D. J. Ferguson, P. Hole, B. Carr, C. W. Redman, A. L. Harris, and P. J. Dobson, Nanomedicine, 7, 780 (2011).CrossRefGoogle Scholar
  39. (39).
    C. Gardiner, Y. J. Ferreira, R. A. Dragovic, C. W. Redman, and I. L. Sargent, J. Extracell. Vesicles, 2, 19671 (2013).CrossRefGoogle Scholar
  40. (40).
    S. L. N. Maas, J. de Vrij, E. J. van der Vlist, B. Geragousian, L. van Bloois, E. Mastrobattista, R. M. Schiffelers, M. H. M. Wauben, M. L. D. Broekman, and E. N. M. Nolte’t Hoen, J. Control. Release, 200, 87 (2015).CrossRefGoogle Scholar
  41. (41).
    B. Carr, P. Hole, A. Malloy, P. Nelson, and J. Smith, Eur. J. Parenter. Sci. Pharm. Sci., 14, 45 (2009).Google Scholar
  42. (42).
    F. De Jaeghere, E. Allémann, J.–C. Leroux, W. Stevels, J. Feijen, E. Doelker, and R. Gurny, Pharm. Res., 16, 859 (1999).CrossRefGoogle Scholar
  43. (43).
    W. Abdelwahed, G. Degobert, S. Stainmesse, and H. Fessi, Adv. Drug Deliv. Rev., 58, 1688 (2006).CrossRefGoogle Scholar
  44. (44).
    Y. Tabata and Y. Ikada, in New Polymer Materials, Springer 1990, pp 107–141.CrossRefGoogle Scholar
  45. (45).
    A. Kawashima, K. Tanigawa, T. Akama, H. Wu, M. Sue, A. Yoshihara, Y. Ishido, K. Kobiyama, F. Takeshita, K.J. Ishii, H. Hirano, H. Kimura, T. Sakai, N. Ishii, and K. Suzuki, Endocrinology, 152, 1702 (2011).CrossRefGoogle Scholar
  46. (46).
    H. Abdelkader, B. Pierscionek, and R.G. Alany, Int. J. Pharm., 477, 631 (2014).CrossRefGoogle Scholar
  47. (47).
    T. L. Whiteside, A. Gambotto, A. Albers, J. Stanson, and E. P. Cohen, Proc. Natl. Acad. Sci., 99, 9415 (2002).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  • Lucie Reinišová
    • 1
  • Filip Novotný
    • 2
  • Martin Pumera
    • 2
  • Katarína Kološtová
    • 3
  • Soňa Hermanová
    • 1
  1. 1.Department of Polymers, Faculty of Chemical TechnologyUniversity of Chemistry and Technology PraguePragueCzech Republic
  2. 2.Center for the Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical TechnologyUniversity of Chemistry and Technology PraguePragueCzech Republic
  3. 3.Faculty Hospital Kralovské VinohradyCenter of Applied BioimplantologyPragueCzech Republic

Personalised recommendations