Macromolecular Research

, Volume 26, Issue 9, pp 838–843 | Cite as

Polymer Masking Method for a High Speed Roll-to-Roll Process

  • Jun-Ho Song
  • Soo Jung Yim
  • Se Jin Lim
  • Jae-Woong Yu


A new polymer masking system with photo-degradable material applicable to high-speed roll-to-roll vacuum deposition processing was studied. Specifically, a process using intense pulsed light to quickly and cleanly remove polymer masks was developed. Poly(methyl methacrylate) (PMMA) and TiO2 were blended together with the positive photoresist to prepare a photo-degradable polymer masking. Infrared spectroscopy confirmed that the positive photoresist moiety, diazonaphtoquinone, was photo-decomposed by white intense pulsed light. The process time required to remove the polymer mask was short enough that this method could be used even in high-speed roll-to-roll processes. It was confirmed that the polymer mask film could be easily removed even at a high process speed by using pressurized gas and adhesive roller tape. The transparent electrode was patterned using a polymer mask and an etching paste, and full solution processed inverted type OPV devices were fabricated. The fabricated OPV by direct etching showed a 94% efficiency compared with that of the reference device.


organic photovoltaic polymer mask intense pulsed light roll-to-roll process 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    K. Ali, K.-H. Choi, J. Jo, and Y. W. Lee, Mater. Lett., 136, 90 (2014).CrossRefGoogle Scholar
  2. (2).
    K. Ali, K.-H. Choi, Langmuir, 30, 14195 (2014).CrossRefPubMedGoogle Scholar
  3. (3).
    K. Ali, K.-H. Choi, and N. M. Muhammad, Chem. Vapor Depos., 20, 380 (2014).CrossRefGoogle Scholar
  4. (4).
    T. Yamada, M. Ishihara, J. Kim, M. Hasegawa, and S. Iijima, Carbon, 50, 2615 (2012).CrossRefGoogle Scholar
  5. (5).
    E. S. Polsen, D. Q. McNerny, B. Viswanath, S. W. Pattinson, and A. J. Hart, Sci. Rep., 5, 10257 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  6. (6).
    V. Miikkulainen, M. Leskelä, M. Ritala, and R. L. Puurunen, J. Appl. Phys., 113, 021301 (2013).CrossRefGoogle Scholar
  7. (7).
    E. Ahvenniemi, A. R. Akbashev, S. Ali, M. Bechelany, M. Berdova, S. Boyadjiev, D. C. Cameron, R. Chen, and M. Chubarov, J. Vac. Sci. Technol. A, 35, 010801 (2016).CrossRefGoogle Scholar
  8. (8).
    A. A. Malygin, V. E. Drozd, A. A. Malkov, and V. M. Smirnov, Chem. Vapor Deposition, 21, 216 (2015).CrossRefGoogle Scholar
  9. (9).
    L. Guo, I. Lee, and F. Zaera, ACS Appl. Mater. Interfaces, 8, 19836 (2016).CrossRefPubMedGoogle Scholar
  10. (10).
    A. Sinha, D. W. Hess, and C. L. Henderson, J. Electrochem. Soc., 153, G465 (2006).CrossRefGoogle Scholar
  11. (11).
    B. Nketia-Yawson and Y.-Y. Noh, Macromol. Res., 25 489 (2017).CrossRefGoogle Scholar
  12. (12).
    S. Park, S.J. Lim, J. Kim, and J.-W. Yu, Macromol. Res., 25 1022 (2017).CrossRefGoogle Scholar
  13. (13).
    G. Grau, J. Cen, H. Kang, R. Kitsomboonloha, W. J. Scheideler, and V. Subramanian, Flex. Print. Electron., 1, 023002 (2016).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  • Jun-Ho Song
    • 1
  • Soo Jung Yim
    • 1
  • Se Jin Lim
    • 1
  • Jae-Woong Yu
    • 1
  1. 1.Department of Advanced Materials Engineering for Information & ElectronicsKyung Hee UniversityGyeonggiKorea

Personalised recommendations