Advertisement

Macromolecular Research

, Volume 26, Issue 9, pp 819–824 | Cite as

Preparation and Characterization of Poly(methyl methacrylate) Particles by Combined Dispersion and Emulsion Polymerization

  • Ibrahim Badr
  • Hadjira Lahmar
  • Chariya Kaewsaneha
  • Salima Saidi-Besbes
  • Abdelhamid Elaissari
Article
  • 72 Downloads

Abstract

Monodispersed poly(methyl methacrylate) (PMMA) nanoparticles were synthesized by combined dispersion and emulsion polymerization, using aqueous alcohol (methanol/water) as the dispersion medium. The influence of the dispersion medium ratio, stabilizer concentration, and initiator type and concentration on the colloidal stability, particle size, size distribution, and %conversion, was investigated. Submicron PMMA particles with a size of approximately 760 nm with a narrow size distribution, high conversion (91%) and good stability throughout the polymerization were obtained using a 50/50 methanol/water ratio, 1 wt% 2,2’-azobisisobutyronitrile (based on monomer), and 1 wt% polyvinylpyrrolidone (based on medium). With increasing the polarity of the dispersion medium (30/70 methanol/water ratio), the size and conversion of PMMA particles decreased to 345 nm and 72%, respectively.

Keywords

submicron PMMA particles controllable particle size monodispersed latex particle dispersion polymerization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    S.-H. Hu and X. Gao, J. Am. Chem. Soc., 132, 7234 (2010).CrossRefPubMedPubMedCentralGoogle Scholar
  2. (2).
    M. M. Eissa, M. M. Rahman, N. Zine, N. Jaffrezic, A. Errachid, H. Fessi, and A. Elaissari, Acta Biomater., 9, 5573 (2013).CrossRefPubMedGoogle Scholar
  3. (3).
    C. Kaewsaneha, K. Jangpatarapongsa, T. Tangchaikeeree, D. Polpanich and P. Tangboriboonrat, J. Biomater. Appl., 29, 761 (2014).CrossRefPubMedGoogle Scholar
  4. (4).
    N. Kamaly, Z. Xiao, P. M. Valencia, A. F. Radovic-Moreno, and O. C. Farokhzad, Chem. Soc. Rev., 41, 2971 (2012).CrossRefPubMedPubMedCentralGoogle Scholar
  5. (5).
    S. Mallakpour and V. Behranvand, eXPRESS Polym. Lett., 10, 895 (2016).CrossRefGoogle Scholar
  6. (6).
    B. L. Banik, P. Fattahi, and J. L. Brown, WIREs Nanomed. Nanobiotechnol., 8, 271 (2016).CrossRefGoogle Scholar
  7. (7).
    A. Nasir, A. Kausar, and A. Younus, Polym. Plast. Technol. Eng., 54, 325 (2015).CrossRefGoogle Scholar
  8. (8).
    S. T. Ha and O. O. Park, Macromol. Res., 18, 935 (2010).CrossRefGoogle Scholar
  9. (9).
    J. Bang, S. E. Rhee, K. Kim, B. H. Lee, and S. Choe, Macromol. Res., 21, 78 (2013).CrossRefGoogle Scholar
  10. (10).
    S. Shen, E. D. Sudol, and M. S. El-Aasser, J. Polym. Sci., Part A: Polym. Chem., 31, 1393 (1993).CrossRefGoogle Scholar
  11. (11).
    S. Shen, E. D. Sudol, and M. S. El-Aasser, J. Polym. Sci., Part A: Polym. Chem., 32, 1087 (1994).CrossRefGoogle Scholar
  12. (12).
    M. Muranaka, Y. Kitamura, and H. Yoshizawa, Colloid Polym. Sci., 285, 1441 (2007).CrossRefGoogle Scholar
  13. (13).
    T. Nakashima and T. Ono, Colloid Polym. Sci., 286, 1587 (2008).CrossRefGoogle Scholar
  14. (14).
    J. S. Song, F. Tronc, and M. A. Winnik, J. Am. Chem. Soc., 126, 6562 (2004).CrossRefPubMedGoogle Scholar
  15. (15).
    S. G. Lee and J.-W. Ha, Macromol. Res., 24, 675 (2016).CrossRefGoogle Scholar
  16. (16).
    B. Peng, E. van der Wee, A. Imhof, and A. van Blaaderen, Langmuir, 28, 6776 (2012).CrossRefPubMedGoogle Scholar
  17. (17).
    S. M. Klein, V. N. Manoharan, D. J. Pine, and F. F. Lange, Colloid Polym. Sci., 282, 7 (2003).CrossRefGoogle Scholar
  18. (18).
    S. Watanabe, T. Kobayashi, H. Sumitomo, M. Murata, and Y. Masuda, Polym. Bull., 65, 543 (2010).CrossRefGoogle Scholar
  19. (19).
    O. H. Kim, K. Lee, K. Kim, B. H. Lee, and S. Choe, Colloid Polym, Sci., 284, 909 (2006).CrossRefGoogle Scholar
  20. (20).
    O. H. Kim, K. Lee, K. Kim, B. H. Lee, and S. Choe, Polymer, 47, 1953 (2006).CrossRefGoogle Scholar
  21. (21).
    W.-M. Chiu, Y. Y. Chen, P. A. Tsai, and J. H. Wu, Polym. Plast. Technol. Eng., 55, 1673 (2016).CrossRefGoogle Scholar
  22. (22).
    K. Cao, J. Yu, B. G. Li, B. F. Li, and Z. R. Pen, Chem. Eng. J., 78, 211 (2000).CrossRefGoogle Scholar
  23. (23).
    J. N. Gavgani, M. Shahrousvand, and M. M. Aslzadeh, Colloid Polym. Sci., 291, 2299 (2013).CrossRefGoogle Scholar
  24. (24).
    Y. Saadat, S. Hosseinzadeh, F. Afshar-Taromi, H. Eslami, and S. Abdolbaghi, Colloid Polym. Sci., 291, 937 (2013).CrossRefGoogle Scholar
  25. (25).
    K. Cao, B. G. Li, and Z. R. Pan, Colloids Surf. A, 153, 179 (1999).CrossRefGoogle Scholar
  26. (26).
    A. P. Richez, L. Farrand, M. Goulding, J. H. Wilson, S. Lawson, S. Biggs, and O. J. Cayre, Langmuir, 30, 1220 (2014).CrossRefPubMedGoogle Scholar
  27. (27).
    H. T. Zhang, T. B. Ren, and Z. H. Yin, Chin. J. Polym. Sci., 19, 45 (2001).Google Scholar
  28. (28).
    K. Tauer, H. Hernandez, S. Kozempel, O. Lazareva, and P. Nazaran, Colloid Polym. Sci., 286, 499 (2008).CrossRefPubMedGoogle Scholar
  29. (29).
    Y.-S. Cho, C. H. Shin, and S. Han, Nanoscale Res. Lett., 11, 46 (2016).CrossRefPubMedPubMedCentralGoogle Scholar
  30. (30).
    J. Choi, S. Y. Kwak, S. Kang, S. S. Lee, M. Park, S. Lim, J. Kim, C. R. Choe, and S. I. Hong, J. Polym. Sci., Part A: Polym. Chem., 40, 4368 (2002).CrossRefGoogle Scholar
  31. (31).
    J. Chen, Z. Zeng, J. Yang, and Y. Chen, J. Polym. Sci., Part A: Polym. Chem., 46, 1329 (2008).CrossRefGoogle Scholar
  32. (32).
    B. Liu, Y. Wang, M. Zhang, and H. Zhang, Polymers, 8, 55 (2016).CrossRefGoogle Scholar
  33. (33).
    Y.-S. Cho, J. Dispers. Sci. Technol., 36, 1237 (2015).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Ibrahim Badr
    • 1
  • Hadjira Lahmar
    • 1
    • 2
  • Chariya Kaewsaneha
    • 1
    • 3
  • Salima Saidi-Besbes
    • 2
  • Abdelhamid Elaissari
    • 1
  1. 1.Univ Lyon, University Claude Bernard Lyon-1, CNRS, LAGEP-UMR 5007LyonFrance
  2. 2.Université Oran 1 Ahmed Ben Bella, Laboratoire de Synthèse Organique Appliquée (LSOA), Département de Chimie, Faculté des Sciences Exactes et AppliquéesOranAlgeria
  3. 3.School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology (SIIT)Thammasat UniversityPathum ThaniThailand

Personalised recommendations