Enhancing the Performance of a Silicon Anode by Using a New Conjugated Polymer Binder Prepared by Direct Arylation

  • Hodong Chu
  • Kukjoo Lee
  • Sanghyun Lim
  • Tae-Hyun Kim
Article
  • 11 Downloads

Abstract

Silicon has been considered as the next-generation anode material for Li-ion batteries due to its high capacity, but suffers from isolated conducting agents due to its large volume expansion and pulverization during cycling, causing rapid decays in performance. Using conjugated polymer binders bearing functional groups that bind Si was suggested to overcome this problem due to their electronic conductivity and enhanced mechanical properties. But conjugated polymers are generally prepared via organometallic intermediates, and are hence very difficult to purify and mass produce. Here, a novel conjugated polymeric binder based on ethylene dioxythiophene (EDOT) and phenylene (EP) was prepared using direct arylation, and then characterized. Specifically, the electrically conductive EP binder showed an enhanced adhesion to Si, and the electrode made of EP showed a capacity of 2250 mAh g-1 at its 1st cycle and 670 mAh g-1 at the 50th cycle, much higher than those of the electrode made of a poly(vinylidene fluoride) (PVdF) binder.

Keywords

silicon anode conjugated polymers polymer binder lithium ion batteries direct arylation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13233_2018_6106_MOESM1_ESM.pdf (251 kb)
Supporting Information

References

  1. (1).
    J. B. Goodenough and K.-S. Park, J. Am. Chem. Soc., 135, 1167 (2013).CrossRefGoogle Scholar
  2. (2).
    H. Wu and Y. Cui, Nano Today, 414, 7 (2012).Google Scholar
  3. (3).
    M. N. Obrovac and V. L. Chevrier, Chem. Rev., 114, 11444 (2014).CrossRefGoogle Scholar
  4. (4).
    B. Liang, Y. Liu, and Y. Xu, J. Power Sources, 267, 469 (2014).CrossRefGoogle Scholar
  5. (5).
    J. Li and J. R. Dahn, J. Electrochem. Soc., 154, A156 (2007).CrossRefGoogle Scholar
  6. (6).
    X. H. Liu and J. Y. Huang, Energy Environ. Sci., 4, 3844 (2011).CrossRefGoogle Scholar
  7. (7).
    H. Tian, F. Xin, X. Wang, W. He and W. Han, J. Materiomics, 1, 153 (2015).CrossRefGoogle Scholar
  8. (8).
    M.-H. Park, M. G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui, and J. Cho, Nano Lett., 9, 3844 (2009).CrossRefGoogle Scholar
  9. (9).
    J.-K. Yoo, J. Kim, Y. S. Jung and K. Kang, Adv. Mater., 24, 5452 (2012).CrossRefGoogle Scholar
  10. (10).
    M. Ebner, F. Geldmacher, F. Marone, M. Stampanoni, and V. Wood, Adv. Energy Mater., 3, 845 (2013).CrossRefGoogle Scholar
  11. (11).
    M. Ebner, F. Marone, M. Stampanoni, and V. Wood, Science, 342, 716 (2013).CrossRefGoogle Scholar
  12. (12).
    M. Ebner, D.-W. Chung, R. E. Garcíia, and V. Wood, Adv. Energy Mater., 4, 1301278 (2014).CrossRefGoogle Scholar
  13. (13).
    C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, Nat. Nanotechnol., 3, 31 (2008).CrossRefGoogle Scholar
  14. (14).
    R. Deshpande, Y.-T. Cheng, and M. W. Verbrugge, J. Power Sources, 195, 5081 (2010).CrossRefGoogle Scholar
  15. (15).
    E. Tsuchida, H. Ohno, and K. Tsunemi, Electrochim. Acta, 28, 591 (1983).CrossRefGoogle Scholar
  16. (16).
    L. Y. Beaulieu, K. W. Eberman, R. L. Turner, L. J. Krause, and J. R. Dahn, Electrochem. Solid-State Lett., 4, A137 (2001).CrossRefGoogle Scholar
  17. (17).
    A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C. F. Huebner, T. F. Fuller, I. Luzinov, and G. Yushin, ACS Appl. Mater. Interfaces, 2, 3004 (2010).CrossRefGoogle Scholar
  18. (18).
    N. Yabuuchi, K. Shimomura, Y. Shimbe, T. Ozeki, J.-Y. Son, H. Oji, Y. Katayama, T. Miura, and S. Komaba, Adv. Energy Mater., 1, 759 (2011).CrossRefGoogle Scholar
  19. (19).
    S. Komaba, N. Yabuuchi, T. Ozeki, Z.-J. Han, K. Shimomura, H. Yui, Y. Katayama, and T. Miura, J. Phys. Chem. C, 116, 1380 (2011).CrossRefGoogle Scholar
  20. (20).
    Z.-J. Han, N. Yabuuchi, K. Shimomura, M. Murase, H. Yui, and S. Komaba, Energy Environ. Sci., 5, 9014 (2012).CrossRefGoogle Scholar
  21. (21).
    C. Erk, T. Brezesinski, H. Sommer, R. Schneider, and J. Janek, ACS Appl. Mater. Interfaces, 5, 7299 (2013).CrossRefGoogle Scholar
  22. (22).
    H.-K. Park, B.-S. Kong, and E.-S. Oh, Electrochem. Commun., 13, 1051 (2011).CrossRefGoogle Scholar
  23. (23).
    J. Song, M. Zhou, R. Yi, T. Xu, M.L. Gordin, D. Tang, Z. Yu, M. Regula, and D. Wang, Adv. Funct. Mater., 24, 5904 (2014).CrossRefGoogle Scholar
  24. (24).
    W.-R. Liu, M.-H. Yang, H.-C. Wu, S.M. Chiao, and N.-L. Wu, Electrochem. Solid-State Lett., 8, A100 (2005).CrossRefGoogle Scholar
  25. (25).
    H. Buqa, M. Holzapfel, F. Krumeich, C. Veit, and P. Nováak, J. Power Sources, 161, 617 (2006).CrossRefGoogle Scholar
  26. (26).
    J. Li, R. B. Lewis, and J. R. Dahn, Electrochem. Solid-State Lett., 10, A17 (2007).CrossRefGoogle Scholar
  27. (27).
    N. S. Hochgatterer, M. R. Schweiger, S. Koller, P. R. Raimann, T. Wöhrle, C. Wurm, and M. Winter, J. Electrochem. Solid State Lett., 11, A76 (2008).CrossRefGoogle Scholar
  28. (28).
    T. M. Higgins, S.-H. Park, P.J. King, C. Zhang, N. McEvoy, N. C. Berner, D. Daly, A. Shmeliov, U. Khan, G. Duesberg, V. Nicolosi, and J. N. Coleman, ACS Nano, 10, 3702 (2016).CrossRefGoogle Scholar
  29. (29).
    K. Lee, S. Lim, A. Tron, J. Mun, Y.-J. Kim, T. Yim, and T.-H. Kim, RSC Adv., 6, 101622 (2016).CrossRefGoogle Scholar
  30. (30).
    M. Wu, X. Xiao, N. Vukmirovic, S. Xun, P. K. Das, X. Song, P. Olalde-Velasco, D. Wang, A. Z. Weber, L.-W. Wang, V. S. Battaglia, W. Yang, and G. Liu, J. Am. Chem. Soc., 135, 12048 (2013).CrossRefGoogle Scholar
  31. (31).
    G. Liu, S. Xun, N. Vukmirovic, X. Song, P. Olalde-Velasco, H. Zheng, V. S. Battaglia, L. Wang, and W. Yang, Adv. Mater., 23, 4679 (2011).CrossRefGoogle Scholar
  32. (32).
    J. L. Bredas and G. B. Street, Acc. Chem. Res., 18, 309 (1985).CrossRefGoogle Scholar
  33. (33).
    D. Alberico, M. E. Scott, and M. Lautens, Chem. Rev., 107, 174 (2007).CrossRefGoogle Scholar
  34. (34).
    K. C. Majumdar, N. De, and S. Chakravorty, Synth. Commun., 41, 121 (2010).CrossRefGoogle Scholar
  35. (35).
    L.-C. Campeau, M. Parisien, M. Leblanc, and K. Fagnou, J. Am. Chem. Soc., 126, 9186 (2004).CrossRefGoogle Scholar
  36. (36).
    D. R. Stuart and K. Fagnou, Science, 316, 1172 (2007).CrossRefGoogle Scholar
  37. (37).
    S. I. Gorelsky, D. Lapointe, and K. Fagnou, J. Am. Chem. Soc., 130, 10848 (2008).CrossRefGoogle Scholar
  38. (38).
    Y. Fujinami, J. Kuwabara, W. Lu, H. Hayashi, and T. Kanbara, ACS Macro Lett., 1, 67 (2011).CrossRefGoogle Scholar
  39. (39).
    M. K. Poduval, P. M. Burrezo, J. Casado, J. T. López Navarrete, R. P. Ortiz, and T.-H. Kim, Macromolecules, 46, 9220 (2013).CrossRefGoogle Scholar
  40. (40).
    J.-R. Pouliot, F. Grenier, J. T. Blaskovits, S. Beaupre, and M. Leclerc, Chem. Rev., 116, 14225 (2016).CrossRefGoogle Scholar
  41. (41).
    J. Kuwabara, M. Kuramochi, S. Liu, T. Yasuda, and T. Kanbara, Polym. J. 49, 123 (2017).CrossRefGoogle Scholar
  42. (42).
    L. Dai, Intelligent Macromolecules for Smart Devices: From Materials Synthesis to Device Applications, Springer, London, 2004.Google Scholar
  43. (43).
    N. A. Kaskhedikar and J. Maier, Adv. Mater., 21, 2664 (2009).CrossRefGoogle Scholar
  44. (44).
    C. Zhang, Y. He, P. Mu, X. Wang, Q. He, Y. Chen, J. Zeng, F. Wang, Y. Xu, and J.-X. Jiang, Adv. Funct. Mater., 28, 1705432 (2018).CrossRefGoogle Scholar
  45. (45).
    D. Liu, Y. Zhao, R. Tan, L.-L. Tian, Y. Liu, H. Chen, and F. Pan, Nano Energy 36, 206 (2017).CrossRefGoogle Scholar
  46. (46).
    S. Lim, H. Chu, K. Lee, T. Yim, Y.-J. Kim, J. Mun, and T.-H. Kim, ACS Appl. Mater. Interfaces, 7, 23545 (2015).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Hodong Chu
    • 1
    • 2
  • Kukjoo Lee
    • 1
    • 2
  • Sanghyun Lim
    • 1
    • 2
  • Tae-Hyun Kim
    • 1
    • 2
  1. 1.Organic Material Synthesis Laboratory, Department of ChemistryIncheon National UniversityIncheonKorea
  2. 2.Research Institute of Basic SciencesIncheon National UniversityIncheonKorea

Personalised recommendations