Advertisement

Macromolecular Research

, Volume 26, Issue 7, pp 659–664 | Cite as

Temperature-Responsive Actuators Fabricated with PVA/PNIPAAm Interpenetrating Polymer Network Bilayers

  • Tae Hoon Lee
  • Jae Young Jho
Article
  • 70 Downloads

Abstract

A series of polymer hydrogel bilayers that show temperature-sensitive deformations were prepared and their temperature-responsive gripping ability was tested. One layer was an interpenetrating polymer network (IPN) of poly(N-isopropylacrylamide) (PNIPAAm) and poly(vinyl alcohol) (PVA), and the other layer was crosslinked PVA. The IPN layer was prepared by absorbing N-isopropylacrylamide monomer solution into the crosslinked PVA film and then polymerizing it by UV irradiation. The structure, swelling properties, and mechanical properties of the IPN and PVA films were investigated. The interpenetration of PNIPAAm appeared to restrict the crystallization of PVA, which affected the swelling and mechanical properties of IPN. The bending deformation of the bilayer fabricated by attaching the IPN and PVA films was observed in 25 °C and 37 °C water. The bending diameter and bending direction could be controlled by combining IPN and PVA films with different degree of crosslinking. The gripping test using starfish-shaped bilayers demonstrated mechanical robustness as well as temperature-sensitivity by lifting and releasing an object much heavier than itself in 25 °C and 37 °C water.

Keywords

poly(vinyl alcohol) poly(N-isopropylacrylamide) temperature-responsive smart hydrogel actuator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Q. Zhang, L. Zha, J. Ma, and B. Liang, Macromol. Rapid Commun., 28, 116 (2007).CrossRefGoogle Scholar
  2. (2).
    H. S. Mansur, C. M. Sadahira, A. N. Souza, and A. A. P. Mansur, Mater. Sci. Eng. C, 28, 539 (2008).CrossRefGoogle Scholar
  3. (3).
    E. Otsuka, S. Kudo, M. Sugiyama, and A. Suzuki, J. Polym. Sci., Part B: Polym. Phys., 49, 96 (2010).CrossRefGoogle Scholar
  4. (4).
    E. Otsuka, M. Sugiyama, and A. Suzuki, Polym. Bull., 67, 1215 (2011).CrossRefGoogle Scholar
  5. (5).
    J. S. Temenoff, K. A. Athanasiou, R. G. LeBaron, and A. G. Mikos, J. Biomed. Mater. Res. A, 59, 429 (2002).CrossRefGoogle Scholar
  6. (6).
    E. C. Muniz and G. Geuskens, Macromolecules, 34, 4480 (2001).CrossRefGoogle Scholar
  7. (7).
    L. Xiong, X. Hu, X. Liu, and Z. Tong, Polymer, 49, 5064 (2008).CrossRefGoogle Scholar
  8. (8).
    Md. A. Haque, T. Kurokawa, and J. P. Gong, Polymer, 53, 1805 (2012).CrossRefGoogle Scholar
  9. (9).
    P. Nuntahirun, O. Yamamoto, and P. Paoprasert, Macromol. Res., 24, 816 (2016).CrossRefGoogle Scholar
  10. (10).
    Y. Shen, X. Li, Y. Huang, G. Chang, K. Cao, J. Yang, R. Zhang, X. Sheng, and X. Ye, Macromol. Res., 24, 602 (2016).CrossRefGoogle Scholar
  11. (11).
    Y. Osada, H. Okuzaki, and H. Hori, Nature, 355, 242 (1992).CrossRefGoogle Scholar
  12. (12).
    H.-J. Hong, J. Kim, Y. J. Suh, D. Kim, K.-M. Roh, and I. Kang, Macromol. Res., 25, 1145 (2017).CrossRefGoogle Scholar
  13. (13).
    S. Ashraf, H.-K. Park, H. Park, and S.-H. Lee, Macromol. Res., 24, 297 (2016).CrossRefGoogle Scholar
  14. (14).
    K. Nagase, J. Kobayashi, and T. Okano, J. R. Soc. Interface, 6, S293 (2009).CrossRefGoogle Scholar
  15. (15).
    P. Calvert, Adv. Mater., 21, 743 (2009).CrossRefGoogle Scholar
  16. (16).
    P. Techawanitchai, M. Ebara, N. Idota, T.-A. Asoh, A. Kikuchic, and T. Aoyagi, Soft Matter, 8, 2844 (2012).CrossRefGoogle Scholar
  17. (17).
    E. Zhang, T. Wang, W. Hong, W. Sun, X. Liu, and Z. Tong, J. Mater. Chem. A, 2, 15633 (2014).CrossRefGoogle Scholar
  18. (18).
    Y. Takashima, S. Hatanaka, M. Otsubo, M. Nakahata, T. Kakuta, A. Hashidzume, H. Yamaguchi, and A. Harada, Nat. Commun., 3, 1270 (2012).CrossRefGoogle Scholar
  19. (19).
    J. Kim, J. A. Hanna, M. Byun, C. D. Santangelo, and R. C. Hayward, Science, 335, 1201 (2012).CrossRefGoogle Scholar
  20. (20).
    M. Heskins and J. E. Guillet, J. Macromol. Sci. A, 2, 1441 (1968).CrossRefGoogle Scholar
  21. (21).
    S. Rimmer, I. Soutar, and L. Swanson, Polym. Int., 58, 273 (2009).CrossRefGoogle Scholar
  22. (22).
    Z. Hu, X. Zhang, and Y. Li, Science, 269, 525 (1995).CrossRefGoogle Scholar
  23. (23).
    S. Petrusic, M. Lewandowski, S. Giraud, P. Jovancic, B. Bugarski, S. Ostojic, and V. Koncar, J. Appl. Polym. Sci., 124, 890 (2012).CrossRefGoogle Scholar
  24. (24).
    J. Djonlagic and Z. S. Petrovic, J. Polym. Sci., Part B: Polym. Phys., 42, 3987 (2004).CrossRefGoogle Scholar
  25. (25).
    Z. Li, J. Shen, H. Ma, X. Lu, M. Shi, N. Li, and M. Ye, Mater. Sci. Eng. C, 33, 1951 (2013).CrossRefGoogle Scholar
  26. (26).
    R. Fei, J. T. George, J. Park, A. K. Means, and M. A. Grunlan, Soft Matter, 9, 2912 (2013).CrossRefGoogle Scholar
  27. (27).
    X. Li, X. Cai, Y. Gao, and M. J. Serpe, J. Mater. Chem. B, 5, 2804 (2017).CrossRefGoogle Scholar
  28. (28).
    C. Yao, Z. Liu, C. Yang, W. Wang, X.-J. Ju, R. Xie, and L-Y. Chu, Adv. Funct. Mater., 25, 2980 (2015).CrossRefGoogle Scholar
  29. (29).
    J. Wang, J. Wang, Z. Chen, S. Fang, Y. Zhu, R. H. Baughman, and L. Jiang, Chem. Mater., 29, 9793 (2017).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemical and Biological EngineeringSeoul National UniversitySeoulKorea

Personalised recommendations