Macromolecular Research

, Volume 26, Issue 7, pp 609–615 | Cite as

Effect of Ionic Liquids on the Fibril-Formation and Gel Properties of Grass Carp (Ctenopharyngodon idellus) Skin Collagen

  • Zhongwei Zhai
  • Haibo Wang
  • Benmei Wei
  • Peiwen Yu
  • Chengzhi Xu
  • Lang He
  • Juntao Zhang
  • Yuling Xu


Self-assembled environment of collagen is one of the important factors for improving and regulating the properties of collagen-based biomaterials. This study aimed to investigate the effect of ionic liquids (ILs) on the fibril-formation and gel properties of grass carp (Ctenopharyngodon idellus) skin collagen. Fibrillogenic kinetics analysis showed that the collagen self-assembly can be suppressed by the introduction of ILs, and the inhibitory effect is influenced by concentration and types of ILs. Scanning electron microscopy test indicated that the assembled collagen fibrils in the presence of ILs had bigger diameters than that in the conventional buffer. Differential scanning calorimetry analysis revealed that the thermal stability of collagen fibrils can be significantly increased when self-assembly is performed in the presence of ILs. Moreover, the introduction of ILs enhanced the mechanical strength of collagen gels. Finding from this work provides a new idea for improving the performance of fish-sourced collagen biomaterials.


Fish-sourced collagen ionic liquids fibril formation collagen gels 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    E. A. A. Neel, L. Bozec, J. C. Knowles, O. Syed, V. Mudera, R. Day, and J. K. Hyun, Adv. Drug Deliv. Rev., 65, 429 (2013).CrossRefGoogle Scholar
  2. (2).
    A. J. Bailey, S. P. Robins, and G. Balian, Nature, 251, 105 (1974).CrossRefGoogle Scholar
  3. (3).
    J. S. Lee, J. K. Kim, and Y. H. Chang, Macromol. Res., 15, 205 (2007).CrossRefGoogle Scholar
  4. (4).
    Y. Jie, Z. Cai, S. Li, Z. Xie, M. Ma, and X. Huang, Macromol. Res., 25, 905 (2017).CrossRefGoogle Scholar
  5. (5).
    J. E. Song, N. Tripathy, J. H. Shin, D. H. Lee, J. G. Cha, C. H. Park, D. S. Suh, and G. Khang, Macromol. Res., 25, 994 (2017).CrossRefGoogle Scholar
  6. (6).
    J. E. Song, N. Tripathy, J. H. Shin, D. H. Lee, C. H. Park, and G. Khang, Macromol. Res., 24, 359 (2016).CrossRefGoogle Scholar
  7. (7).
    B. Brodsky and J. A. M. Ramshaw, Matrix Biol., 15, 545 (1997).CrossRefGoogle Scholar
  8. (8).
    B. Brodsky and A. V. Persikov, Adv. Protein Chem., 70, 301 (2005).CrossRefGoogle Scholar
  9. (9).
    D. J. S. Hulmes, J. Struct. Biol., 1372, 2 (2002).CrossRefGoogle Scholar
  10. (10).
    V. Ottani, D. Martini, M. Franchi, A. Ruggeri, and M. Raspanti, Micron, 33, 587 (2002).CrossRefGoogle Scholar
  11. (11).
    T. Razafiarison, U. Silván, D. Meier, and J. G. Snedeker, Adv. Healthc. Mater., 5, 1481 (2016).CrossRefGoogle Scholar
  12. (12).
    L. Cen, L. Wei, L. Cui, W. Zhang, and Y. Cao, Pediatr. Res., 63, 492 (2008).CrossRefGoogle Scholar
  13. (13).
    S. W. Chang, B. P. Flynn, J. W. Ruberti, and M. J. Buehler, Biomaterials, 33, 3852 (2012).CrossRefGoogle Scholar
  14. (14).
    G. Xiong, H. Luo, C. Zhang, Y. Zhu, and Y. Wan, Macromol. Res., 23, 734 (2015).CrossRefGoogle Scholar
  15. (15).
    M. Yan, B. Li, X. Zhao, and S. Qin, Food Hydrocoll., 29, 199 (2012).CrossRefGoogle Scholar
  16. (16).
    Y. Li, A. Asadi, M. R. Margo, and D. P. Elliot, Mater. Sci. Eng. C, 29, 1643 (2009).CrossRefGoogle Scholar
  17. (17).
    A. M. Oechsle, M. Landenberger, M. Gibis, S. B. Irmscher, R. Kohlus, and J. Weiss, Int. J. Biol. Macromol., 79, 518 (2015).CrossRefGoogle Scholar
  18. (18).
    A. Gopinath, S. M. M. Reddy, B. Madhan, G. Shanmguam, and J. R. Rao, Eur. Biophys. J., 43, 643 (2014).CrossRefGoogle Scholar
  19. (19).
    J. Li, W. Liu, and G. Li, Int. J. Biol. Macromol., 72, 1097 (2015).CrossRefGoogle Scholar
  20. (20).
    T. Welton, Chem. Rev., 99, 2071 (1999).CrossRefGoogle Scholar
  21. (21).
    C. Dai, J. Zhang, C. Huang, and Z. Lei, Chem. Rev., 117, 6881 (2017).CrossRefGoogle Scholar
  22. (22).
    S. N. Shah, L. K. Chellappan, G. Gonfa, M. I. A. Mutalib, R. B. M. Pilus, and M. A. Bustam, Chem. Eng. J., 284, 487 (2016).CrossRefGoogle Scholar
  23. (23).
    S. R. Tomlinson, C. W. Kehr, M. S. Lopez, J. R. Schlup, and J. L. Anthony, Ind. Eng. Chem. Res., 53, 2293 (2014).CrossRefGoogle Scholar
  24. (24).
    H. Noritomi, K. Minamisawa, R. Kamiya, and S. Kato, J. Biomed. Sci. Eng., 4, 94 (2011).CrossRefGoogle Scholar
  25. (25).
    L. Warner, E. Gjersing, S. E. Follett, K. W. Elliott, S. V. Dzyuba, and K. Varga, Biochem. Biophy. Rep., 8, 75 (2016).Google Scholar
  26. (26).
    C. Banerjee, A. Roy, N. Kundu, D. Banik, and N. Sarkar, Phys. Chem. Chem. Phys., 18, 14520 (2016).CrossRefGoogle Scholar
  27. (27).
    P. Bharmoria and A. Kumar, Biochim. Biophy. Acta, 1860, 1017 (2016).CrossRefGoogle Scholar
  28. (28).
    Z. Meng, X. Zheng, K. Tang, J. Liu, Z. Ma, and Q. Zhao, Int. J. Biol. Macromol., 51, 440 (2012).CrossRefGoogle Scholar
  29. (29).
    Y. Hu, L. Liu, W. Dan, N. Dan, and Z. Gu, J. Appl. Polym. Sci., 130, 2245 (2013).CrossRefGoogle Scholar
  30. (30).
    J. E. Eastoe, Biochem. J., 61, 589 (1955).CrossRefGoogle Scholar
  31. (31).
    D. G. Wallace and J. Rosenblatt, Adv. Drug Deliv. Rev., 55, 1631 (2003).CrossRefGoogle Scholar
  32. (32).
    S. Zeng, C. Zhang, H. Lin, P. Yang, P. Hong, and Z. Jiang, Food Chem., 116, 879 (2009).CrossRefGoogle Scholar
  33. (33).
    J. Zhang, M. Zou, M. Zhang, B. Wei, C. Xu, D. Xie, and H. Wang, Food Biophys., 11, 380 (2016).CrossRefGoogle Scholar
  34. (34).
    F. Pati, P. Datta, B. Adhikari, S. Dhara, K. Ghosh, and P. K. D. Mohapatra, J. Biomed. Mater. Res. A, 100, 1068 (2012).CrossRefGoogle Scholar
  35. (35).
    M. Safandowska and K. Pietrucha, Int. J. Biol. Macromol., 53, 32 (2013).CrossRefGoogle Scholar
  36. (36).
    M. Ogawa, M. W. Moody, R. J. Portier, J. Bell, M. A. Schexnayder, and J. N. Losso, J. Agric. Food Chem., 51, 8088 (2003).CrossRefGoogle Scholar
  37. (37).
    H. Yang, H. Wang, Y. Zhao, H. Wang, and H. Zhang, J. Sci. Food Agric., 95, 329 (2015).CrossRefGoogle Scholar
  38. (38).
    M. H. Uriarte-Montoya, J. L. Arias-Moscoso, M. Plascencia-Jatomea, H. Santacruz-Ortega, O. Rouzaud-Sández, J. L. Cardenas-Lopez, E. Marquez-Rios, and J. M. Ezquerra-Brauer, Bioresour. Technol., 101, 4212 (2010).CrossRefGoogle Scholar
  39. (39).
    Y. Zhang, W. Liu, G. Li, B. Shi, Y. Miao, and X. Wu, Food Chem., 103, 906 (2007).CrossRefGoogle Scholar
  40. (40).
    C. Li, Z. Zhong, Q. Wan, H. Zhao, H. Gu, and S. Xiong, Eur. Food Res. Technol., 227, 1467 (2008).CrossRefGoogle Scholar
  41. (41).
    F. H. Silver and D. E. Birk, Coll. Relat. Res., 3, 393 (1983).CrossRefGoogle Scholar
  42. (42).
    M. A. Cejas, W. A. Kinney, C. Chen, J. G. Vinter, H. R. Almond, K. M. Balss, C. A. Maryanoff, U. Schmidt, M. Breslav, A. Mahan, E. Lacy, and B. E. Maryanoff, Proc. Natl. Acad. Sci. U.S.A., 105, 8513 (2008).CrossRefGoogle Scholar
  43. (43).
    J. Rosenblatt, B. Devereux, and D. G. Wallace, Biomaterials, 15, 985 (1994).CrossRefGoogle Scholar
  44. (44).
    N. J. Delorenzi, G. Sculsky, and C. A. Gatti, Int. J. Biol. Macromol., 19, 15 (1996).CrossRefGoogle Scholar
  45. (45).
    K. E. Kadler, D. F. Holmes, J. A. Trotter, and J. A. Chapman, Biochem. J., 316, 1 (1996).CrossRefGoogle Scholar
  46. (46).
    Y. Jiang, H.Wang, M. Deng, Z. Wang, J. Zhang, H. Wang, and H. Zhang, Mater. Sci. Eng. C, 59, 1038 (2016).CrossRefGoogle Scholar
  47. (47).
    D. L. Christiansen, E. K. Huang, and F. H. Silver, Matrix Biol., 19, 409 (2000).CrossRefGoogle Scholar
  48. (48).
    S. Nehrer, H. A. Breinan, A. Ramappa, G. Young, S. Shortkroff, L. K. Louie, C. B. Sledge, I. V. Yannas, and M. Spector, Biomaterials, 18, 769 (1997).CrossRefGoogle Scholar
  49. (49).
    M. D. Shoulders and R. T. Raines, Annu. Rev. Biochem., 78, 929 (2009).CrossRefGoogle Scholar
  50. (50).
    J. Zhang, B. Wei, L. He, C. Xu, D. Xie, K. Paik, and H. Wang, Macromol. Res., 25, 1105 (2017).CrossRefGoogle Scholar
  51. (51).
    R. Komsa-Penkova, R. Koynova, G. Kostov, and B. G. Tenchov, Biochim. Biophys. Acta, 1297, 171 (1996).CrossRefGoogle Scholar
  52. (52).
    T. V. Burjanadze, E. I. Tikopulo, and P. L. Privalov, Dokl. Akad. Nauk. SSSR, 293, 720 (1987).Google Scholar
  53. (53).
    W. Dai, L. E. Wold, J. S. Dow, and R. A. Kloner, J. Am. Coll. Cardiol., 46, 714 (2005).CrossRefGoogle Scholar
  54. (54).
    I. Rault, V. Frei, D. Herbage, N. Abdul-Malak, and A. Huc, J. Mater. Sci. Mater. Med., 7, 215 (1996).CrossRefGoogle Scholar
  55. (55).
    H. H. Winter and F. Chambon, J. Rheol., 30, 367 (1986).CrossRefGoogle Scholar
  56. (56).
    M. Korhonen, L. Hellen, J. Hirvonen, and J. Yliruusi, Int. J. Pharm., 221, 187 (2001).CrossRefGoogle Scholar
  57. (57).
    J. J. Lightbody, Am. J. Cosmet. Surg., 6, 17 (1989).CrossRefGoogle Scholar
  58. (58).
    E. Curti, E. Carini, G. Tribuzio, and E. Vittadini, Food Sci. Technol., 59, 418 (2014).Google Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Zhongwei Zhai
    • 1
  • Haibo Wang
    • 1
  • Benmei Wei
    • 1
  • Peiwen Yu
    • 1
  • Chengzhi Xu
    • 1
  • Lang He
    • 1
  • Juntao Zhang
    • 1
  • Yuling Xu
    • 1
  1. 1.School of Chemical and Environmental EngineeringWuhan Polytechnic UniversityWuhan, HubeiP. R. China

Personalised recommendations