Macromolecular Research

, Volume 26, Issue 6, pp 539–543 | Cite as

Close-Packed Colloidal Monolayers of Ultra-Smooth Gold Nanospheres by Controlled Trapping onto Polymer Thin Films

  • Jun-Min Kim
  • Dae-Woong Jung
  • Gaehang LeeEmail author
  • Gi-Ra YiEmail author


Ultra-smooth and highly-spherical gold nanoparticles can form uniform colloidal film from evaporating sessile droplets on substrates at relatively high temperature, in which gold nanospheres are assembled at the air-liquid interface due to fast evaporation and further form multilayers on polystyrene-coated silicon wafer. Then, gold nanospheres at bottom layer are wetted by polystyrene upon thermal annealing around 80 °C and securely trapped in polymer solid film during cooling step. Finally, additionally stacked nanospheres in multilayer film are washed out by simple sonication leaving high-quality colloidal monolayers of gold nanospheres.


gold nanospheres colloidal monolayer wetting trapping 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13233_2018_6077_MOESM1_ESM.pdf (692 kb)
Supporting Information


  1. (1).
    S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, Nat. Nanotechnol., 6, 268 (2011).CrossRefGoogle Scholar
  2. (2).
    F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alù, and X. Li, Nat. Nanotechnol., 8, 95 (2013).CrossRefGoogle Scholar
  3. (3).
    Y. A. Urzhumov, G. Shvets, J. Fan, F. Capasso, D. Brandl, P. Nordlander, Opt. Express, 15, 14129 (2007).CrossRefGoogle Scholar
  4. (4).
    C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, D. R. Smith, Probing the Ultimate Limits of Plasmonic Enhancement Science, 337, 1072 (2012).Google Scholar
  5. (5).
    N. Engheta, Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials Science, 317, 1698 (2007).Google Scholar
  6. (6).
    M. Homberger and U. Simon, Phil. Trans. R. Soc. A, 368, 1405 (2010).CrossRefGoogle Scholar
  7. (7).
    J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Biosensing with Plasmonic Nanosensors Nat. Mater., 7, 442 (2008).Google Scholar
  8. (8).
    M. Stratakis and H. Garcia, Chem. Rev., 112, 4469 (2012).CrossRefGoogle Scholar
  9. (9).
    J. Zhao, S. C. Nguyen, R. Ye, B. Ye, H. Weller, G. A. Somorjai, A. P. Alivisatos, and F. D. Toste, ACS Cent. Sci., 3, 482 (2017).CrossRefGoogle Scholar
  10. (10).
    K. Matsuoka, K. Miyazaki, Y. Iriyama, K. Kikuchi, T. Abe, and Z. Ogumi, J. Phys. Chem. C, 111, 3171 (2007).CrossRefGoogle Scholar
  11. (11).
    Y.-J. Lee, N. B. Schade, L. Sun, J. A. Fan, D. R. Bae, M. M. Mariscal, G. Lee, F. Capasso, S. Sacanna, V. N. Manoharan, and G.-R. Yi, ACS Nano, 7, 11064 (2013).CrossRefGoogle Scholar
  12. (12).
    K. J. Park, J.-H. Huh, D.-W. Jung, J.-S. Park, G. H. Choi, G. Lee, P. J. Yoo, H.- G. Park, G.-R. Yi, and S. Lee, Sci. Rep., 7, 6045 (2017).CrossRefGoogle Scholar
  13. (13).
    M. Kim, S. Lee, J. Lee, D. K. Kim, Y. J. Hwang, G. Lee, G.-R. Yi, and Y. J. Song, Opt. Express, 23, 12766 (2015).CrossRefGoogle Scholar
  14. (14).
    D.-K. Kim, Y. J. Hwang, C. Yoon, H.-O. Yoon, K. S. Chang, G. Lee, S. Lee, and G.-R. Yi, Phys. Chem. Chem. Phys., 17, 20786 (2015).CrossRefGoogle Scholar
  15. (15).
    S. Lee, Opt. Express, 23, 28170 (2015).CrossRefGoogle Scholar
  16. (16).
    M. Kolle and S. Lee, Adv. Mater., 30, 1702669 (2018).CrossRefGoogle Scholar
  17. (17).
    S. Lee and J, Kim, Opt. Express, 23, 21809 (2015).CrossRefGoogle Scholar
  18. (18).
    Y. Montelongo, D. Sikdar, Y. Ma, A. J. S. McIntosh, L. Velleman, A. R. Kucernak, J. B. Edel, and A. A. Kornyshev, Nat. Mater., 16, 1127 (2017).CrossRefGoogle Scholar
  19. (19).
    L. Zhang, C. Guan, Y. Wang, and J. Liao, Nanoscale, 8, 5928 (2016).CrossRefGoogle Scholar
  20. (20).
    E. W. Foster, G. J. Kearns, S. Goto, and J. E. Hutchison, Adv. Mater., 17, 1542 (2005).CrossRefGoogle Scholar
  21. (21).
    C. H. Lalander, Y. Zheng, S. Dhuey, S. Cabrini, and U. Bach, ACS Nano, 4, 6153 (2010).CrossRefGoogle Scholar
  22. (22).
    H. Kim, F. Boulogne, E. Um, I. Jacobi, E. Button, and H. A. Stone, Phys. Rev. Lett., 116, 124501 (2016).CrossRefGoogle Scholar
  23. (23).
    Y. Li, Q. Yang, M. Li, and Y. Song, Sci. Rep., 6, 24628 (2016).CrossRefGoogle Scholar
  24. (24).
    Y. Chai, T. Salez, T. D. McGraw, M. Benzaquen, K. Dalnoki-Veress, E. Raphael, and J. A. Forrest, Science, 343, 994 (2014).CrossRefGoogle Scholar
  25. (25).
    C. Vericat, M. E. Vela, G. Benitez, P. Carro, and R. C. Salvarezza, Chem. Soc. Rev., 39, 1805 (2010).CrossRefGoogle Scholar
  26. (26).
    N. Garg, E. Carrasquillo-Molina, and T. R. Lee, Langmuir, 18, 2717 (2002).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Chemical EngineeringSungkyunkwan UniversitySuwon, GyeonggiKorea
  2. 2.Korea Basic Science InstituteDaejeonKorea

Personalised recommendations