Advertisement

Macromolecular Research

, Volume 26, Issue 6, pp 521–528 | Cite as

Self-Assembly of Carbon Nanotubes and Boron Nitride via Electrostatic Interaction for Epoxy Composites of High Thermal Conductivity and Electrical Resistivity

  • Minh Canh Vu
  • Tuan Sang Tran
  • Young Han Bae
  • Min Ji Yu
  • Vu Chi Doan
  • Jae Heung Lee
  • Tae Kyu An
  • Sung-Ryong Kim
Article
  • 93 Downloads

Abstract

The self-assembled oxidized carbon nanotubes (oCNTs) with the silane functionalized hexagonal boron nitrides (oCNTs@fBN) via electrostatic interaction were used to improve the thermal conductivity while maintaining the electrical insulation properties of the epoxy composites. The oCNTs were separately immobilized on the edges of hexagonal boron nitride (hBN), which prevent oCNTs from continuously contacting with each other. The thermal conductivity and volume resistivity of oCNTs@fBN filler loaded epoxy composites were measured and compared with the epoxy composites with a filler of hBN, a mixed filler of oCNTs, and silane functionalized hBN (fBN). The thermal conductivity of the epoxy composites containing 20 wt% of oCNTs@fBN10 was 1.26 W·m-1·K-1, which is higher than 600% compared to that of neat epoxy and the volume resistivity of the epoxy composites was in an insulation region even at high content of oCNTs@fBN filler. The significant improvement in thermal conductivity was attributed to the formation of linkages between oCNTs and fBN and the good compatibility of oCNTs@fBN in the epoxy matrix.

Keywords

electrostatic interaction boron nitride carbon nanotubes thermal conductivity electrical resistivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    K. Sato, H. Horibe, T. Shirai, Y. Hotta, H. Nakano, H. Nagai, K. Mitsuishi, and K. Watari, J. Mater. Chem., 20, 2749 (2010).CrossRefGoogle Scholar
  2. (2).
    K. Uetani, S. Ata, S. Tomonoh, T. Yamada, M. Yumura, and K. Hata, Adv. Mater., 26, 5857 (2014).CrossRefGoogle Scholar
  3. (3).
    J. H. Zhu, S. Wei, J. Ryu, M. Budhathoki, G. Liang, and Z. Guo, J. Mater. Chem., 20, 4937 (2010).CrossRefGoogle Scholar
  4. (4).
    T. Kusunose, T. Yagi, S. H. Firoz, and T. Sekino, J. Mater. Chem. A, 1, 3440 (2013).CrossRefGoogle Scholar
  5. (5).
    P. Gonon, A. Sylvestre, J. Teysseyre, and C. Prior, Mater. Sci. Eng. B: Adv. Func. Solid-State Mater., 83, 158 (2001).CrossRefGoogle Scholar
  6. (6).
    H. Im and J. Kim, Carbon, 49, 3503 (2011).CrossRefGoogle Scholar
  7. (7).
    X. Huang, T. Iizuka, P. Jiang, Y. Ohki, and T. Tanaka, J. Phys. Chem. C, 116, 13629 (2012).CrossRefGoogle Scholar
  8. (8).
    G. Hou, B. Cheng, F. Ding, M. Yao, P. Hu, and F. Yuan, ACS Appl. Mater. Interfaces, 7, 2873 (2015).CrossRefGoogle Scholar
  9. (9).
    D. Suh, C. M. Moon, D. Kim, and S. Baik, Adv. Mater., 28, 7220 (2016).CrossRefGoogle Scholar
  10. (10).
    M. C. Vu, G. D. Park, Y. H. Bae, and S. R. Kim, Polym. Korea, 40, 804 (2016).CrossRefGoogle Scholar
  11. (11).
    K. Kim, K. Ahn, H. Ju, and J. Kim, Ind. Eng. Chem. Res., 55, 2713 (2016).CrossRefGoogle Scholar
  12. (12).
    X. Cui, P. Ding, N. Zhuang, L. Shi, N. Song, and S. Tang, ACS Appl. Mater. Interfaces, 7, 19068 (2015).CrossRefGoogle Scholar
  13. (13).
    H. Im and J. Kim, Carbon, 50, 5429 (2012).CrossRefGoogle Scholar
  14. (14).
    S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Nature, 442, 282 (2006).CrossRefGoogle Scholar
  15. (15).
    K. M. F. Shahil and A. A. Balandin, Nano Lett., 12, 861 (2012).CrossRefGoogle Scholar
  16. (16).
    A. M. Marconnet, N. Yamamoto, M. A. Panzer, B. L. Wardle, and K. E. Goodson, ACS Nano, 5, 4818 (2011).CrossRefGoogle Scholar
  17. (17).
    L. Monica Veca, M. J. Meziani, W. Wang, X. Wang, F. Lu, P. Zhang, Y. Lin, R. Fee, J. W. Connell, and Y. P. Sun, Adv. Mater., 21, 2088 (2015).CrossRefGoogle Scholar
  18. (18).
    W. Bin Zhang, Z. X. Zhang, J. H. Yang, T. Huang, N. Zhang, X. T. Zheng, Y. Wang, and Z. W. Zhou, Carbon, 90, 242 (2015).CrossRefGoogle Scholar
  19. (19).
    R. C. Zhang, D. Sun, A. Lu, S. Askari, M. M. Montero, P. Joseph, D. Dixon, K. Ostrikov, P. Maguire, and D. Mariotti, ACS App. Mater. Interfaces, 8, 13567 (2016).CrossRefGoogle Scholar
  20. (20).
    R. C. Zhang, D. Sun, A. Lu, S. Askari, M. Macias-Montero, P. Joseph, D. Dixon, K. Ostrikov, P. Maguire, and D. Mariotti, ACS Appl. Mater. Interfaces, 8, 13567 (2016).CrossRefGoogle Scholar
  21. (21).
    J. Hou, G. Li, N. Yang, L. Qin, M. E. Grami, Q. Zhang, N. Wang, and X. Qu, RSC Adv., 4, 44282 (2014).CrossRefGoogle Scholar
  22. (22).
    K. Kim, M. Kim, Y. Hwang, and J. Kim, Ceram. Int., 40, 2047 (2014).CrossRefGoogle Scholar
  23. (23).
    Y. Zhang, S. Xiao, Q. Wang, S. Liu, Z. Qiao, Z. Chi, J. Xu, and J. Economy, J. Mater. Chem., 21, 14563 (2011).CrossRefGoogle Scholar
  24. (24).
    C. Tang, G. Long, X. Hu, K. Wong, W. Lau, M. Fan, J. Mei, T. Xu, B. Wang, and D. Hui, Nanoscale, 6, 7877 (2014).CrossRefGoogle Scholar
  25. (25).
    Y. J. Xiao, W. Y. Wang, T. Lin, X. J. Chen, Y. T. Zhang, J. H. Yang, Y. Wang, and Z. W. Zhou, J. Phys. Chem. C, 120, 6344 (2016).CrossRefGoogle Scholar
  26. (26).
    Z. Cui, A. J. Oyer, A. J. Glover, H. C. Schniepp, and D. H. Adamson, Small, 10, 2352 (2014).CrossRefGoogle Scholar
  27. (27).
    R. Y. Tay, H. Li, S. H. Tsang, L. Jing, D. Tan, M. Wei, and E. H. T. Teo, Chem. Mater., 27, 7156 (2015).CrossRefGoogle Scholar
  28. (28).
    T. L. Li and S. L. C. Hsu, J. Appl. Polym. Sci., 121, 916 (2011).CrossRefGoogle Scholar
  29. (29).
    T. Huang, X. Zeng, Y. Yao, R. Sun, F. Meng, J. Xu, and C. Wong, RSC Adv., 6, 35847 (2016).CrossRefGoogle Scholar
  30. (30).
    W. Yan, Y. Zhang, H. Sun, S. Liu, Z. Chi, X. Chen, and J. Xu, J. Mater. Chem. A, 2, 20958 (2014).CrossRefGoogle Scholar
  31. (31).
    S. Y. Pak, H. M. Kim, S. Y. Kim, and J. R. Youn, Carbon, 50, 4830 (2012).CrossRefGoogle Scholar
  32. (32).
    D. Cai and M. Song, Carbon, 46, 2107 (2008).CrossRefGoogle Scholar
  33. (33).
    K. Yang, M. Gu, Y. Gou, X. Pan, and G. Mu, Carbon, 47, 1723 (2009).CrossRefGoogle Scholar
  34. (34).
    S. Y. Yang, C. C. M. Ma, C. C. Teng, Y. W. Huang, S. H. Liao, Y. L. Huang, H. W. Tien, T. M. Lee, and K. C. Chiou, Carbon, 48, 592 (2010).CrossRefGoogle Scholar
  35. (35).
    S. Wang, R. Liang, B. Wang, and C. Zhang, Carbon, 47, 53 (2009).CrossRefGoogle Scholar
  36. (36).
    Z. Lin, A. Mcnamara, Y. Liu, K. Moon, and C. Wong, Compos. Sci. Technol., 90, 123 (2014).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Minh Canh Vu
    • 1
  • Tuan Sang Tran
    • 2
  • Young Han Bae
    • 1
  • Min Ji Yu
    • 1
  • Vu Chi Doan
    • 1
  • Jae Heung Lee
    • 3
  • Tae Kyu An
    • 1
  • Sung-Ryong Kim
    • 1
  1. 1.Department of Polymer Science and EngineeringKorea National University of TransportationChungju, ChungbukKorea
  2. 2.School of Chemical EngineeringThe University of AdelaideAdelaideAustralia
  3. 3.Chemical Materials Solutions CenterKorea Research Institute of Chemical TechnologyDaejeonKorea

Personalised recommendations